36 research outputs found

    A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem

    Get PDF
    We present a column generation algorithm for solving the bi-objective multi-commodity minimum cost flow problem. This method is based on the bi-objective simplex method and Dantzig–Wolfe decomposition. The method is initialised by optimising the problem with respect to the first objective, a single objective multi-commodity flow problem, which is solved using Dantzig–Wolfe decomposition. Then, similar to the bi-objective simplex method, our algorithm iteratively moves from one non-dominated extreme point to the next one by finding entering variables with the maximum ratio of improvement of the second objective over deterioration of the first objective. Our method reformulates the problem into a bi-objective master problem over a set of capacity constraints and several single objective linear fractional sub-problems each over a set of network flow conservation constraints. The master problem iteratively updates cost coefficients for the fractional sub-problems. Based on these cost coefficients an optimal solution of each sub-problem is obtained. The solution with the best ratio objective value out of all sub-problems represents the entering variable for the master basis. The algorithm terminates when there is no entering variable which can improve the second objective by deteriorating the first objective. This implies that all non-dominated extreme points of the original problem are obtained. We report on the performance of the algorithm on several directed bi-objective network instances with different characteristics and different numbers of commodities

    Solving the hazmat transport network design problem

    Get PDF
    In this paper, we consider the problem of network design for hazardous material transportation where the government designates a network, and the carriers choose the routes on the network. We model the problem as a bilevel network flow formulation and analyze the bilevel design problem by comparing it to three other decision scenarios. The bilevel model is difficult to solve and may be ill-posed. We propose a heuristic solution method that always finds a stable solution. The heuristic exploits the network flow structure at both levels to overcome the difficulty and instability of the bilevel integer programming model. Testing on real data shows that the linearization of the bilevel model fails to find stable solutions and that the heuristic finds lower risk networks in less time. Further testing on random instances shows that the heuristically designed networks achieve significant risk reduction over single-level models. The risk is very close to the least risk possible. However, this reduction in risk comes with a significant increase in cost. We extend the bilevel model to account for the cost/risk trade-off by including cost in the first-level objective. The biobjective-bilevel model is a rich decision-support tool that allows for the generation of many good solutions to the design problem. © 2006 Elsevier Ltd. All rights reserved

    Two-phase strategies for the bi-objective minimum spanning tree problem

    Get PDF
    This paper presents a new two-phase algorithm for the bi-objective minimum spanning tree (BMST) prob-lem. In the first phase, it computes the extreme supported efficient solutions resorting to both mathematicalprogramming and algorithmic approaches, while the second phase is devoted to obtaining the remaining ef-ficient solutions (non-extreme supported and non-supported). This latter phase is based on a new recursiveprocedure capable of generating all the spanning trees of a connected graph through edge interchanges basedon increasing evaluation of non-zero reduced costs of associated weighted linear programs. Such a procedureexploits a common property of a wider class of problems to which the minimum spanning tree (MST) prob-lem belongs, that is the spanning tree structure of its basic feasible solutions. Computational experimentsare conducted on different families of graphs and with different types of cost. These results show that thisnew two-phase algorithm is correct, very easy to implement and it allows one to extract conclusions on thedifficulty of finding the entire set of Pareto solutions of the BMST problem depending on the graph topologyand the possible correlation of the edge cost

    Bi-criteria network optimization: problems and algorithms

    Get PDF
    Several approaches, exact and heuristics, have been designed in order to generate the Pareto frontier for multi-objective combinatorial optimization problems. Although several classes of standard optimization models have been studied in their multi- objective version, there still exists a big gap between the solution techniques and the complexity of the mathematical models that derive from the most recent real world applications. In this thesis such aspect is highlighted with reference to a specific application field, the telecommunication sector, where several emerging optimization problems are characterized by a multi-objective nature. The study of some of these problems, analyzed and solved in the thesis, has been the starting point for an assessment of the state of the art in multicriteria optimization with particular focus on multi-objective integer linear programming. A general two-phase approach for bi-criteria integer network flow problems has been proposed and applied to the bi-objective integer minimum cost flow and the bi-objective minimum spanning tree problem. For both of them the two-phase approach has been designed and tested to generate a complete set of efficient solutions. This procedure, with appropriate changes according to the specific problem, could be applied on other bi-objective integer network flow problems. In this perspective, this work can be seen as a first attempt in the direction of closing the gap between the complex models associated with the most recent real world applications and the methodologies to deal with multi-objective programming. The thesis is structured in the following way: Chapter 1 reports some preliminary concepts on graph and networks and a short overview of the main network flow problems; in Chapter 2 some emerging optimization problems are described, mathematically formalized and solved, underling their multi-objective nature. Chapter 3 presents the state of the art on multicriteria optimization. Chapter 4 describes the general idea of the solution algorithm proposed in this work for bi-objective integer network flow problems. Chapter 5 is focused on the bi-objective integer minimum cost flow problem and on the adaptation of the procedure proposed in Chapter 4 on such a problem. Analogously, Chapter 6 describes the application of the same approach on the bi-objective minimum spanning tree problem. Summing up, the general scheme appears to adapt very well to both problems and can be easily implemented. For the bi-objective integer minimum cost flow problem, the numerical tests performed on a selection of test instances, taken from the literature, permit to verify that the algorithm finds a complete set of efficient solutions. For the bi-objective minimum spanning tree problem, we solved a numerical example using two alternative methods for the first phase, confirming the practicability of the approach

    Mathematic Models for Quality of Service Purposes in Ad Hoc Networks

    Get PDF

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    Randomized rounding algorithms for large scale unsplittable flow problems

    Get PDF
    Unsplittable flow problems cover a wide range of telecommunication and transporta- tion problems and their efficient resolution is key to a number of applications. In this work, we study algorithms that can scale up to large graphs and important num- bers of commodities. We present and analyze in detail a heuristic based on the linear relaxation of the problem and randomized rounding. We provide empirical evidence that this approach is competitive with state-of-the-art resolution methods either by its scaling performance or by the quality of its solutions. We provide a variation of the heuristic which has the same approximation factor as the state-of-the-art approxima- tion algorithm. We also derive a tighter analysis for the approximation factor of both the variation and the state-of-the-art algorithm. We introduce a new objective function for the unsplittable flow problem and discuss its differences with the classical con- gestion objective function. Finally, we discuss the gap in practical performance and theoretical guarantees between all the aforementioned algorithms

    Arc routing problems: A review of the past, present, and future

    Full text link
    [EN] Arc routing problems (ARPs) are defined and introduced. Following a brief history of developments in this area of research, different types of ARPs are described that are currently relevant for study. In addition, particular features of ARPs that are important from a theoretical or practical point of view are discussed. A section on applications describes some of the changes that have occurred from early applications of ARP models to the present day and points the way to emerging topics for study. A final section provides information on libraries and instance repositories for ARPs. The review concludes with some perspectives on future research developments and opportunities for emerging applicationsThis research was supported by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: PGC2018-099428-B-I00. The Research Council of Norway, Grant/Award Numbers: 246825/O70 (DynamITe), 263031/O70 (AXIOM).Corberán, Á.; Eglese, R.; Hasle, G.; Plana, I.; Sanchís Llopis, JM. (2021). Arc routing problems: A review of the past, present, and future. Networks. 77(1):88-115. https://doi.org/10.1002/net.21965S8811577
    corecore