15 research outputs found

    Projected gradient descent for non-convex sparse spike estimation

    Full text link
    We propose a new algorithm for sparse spike estimation from Fourier measurements. Based on theoretical results on non-convex optimization techniques for off-the-grid sparse spike estimation, we present a projected gradient descent algorithm coupled with a spectral initialization procedure. Our algorithm permits to estimate the positions of large numbers of Diracs in 2d from random Fourier measurements. We present, along with the algorithm, theoretical qualitative insights explaining the success of our algorithm. This opens a new direction for practical off-the-grid spike estimation with theoretical guarantees in imaging applications

    The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension

    Full text link
    Non-convex methods for linear inverse problems with low-dimensional models have emerged as an alternative to convex techniques. We propose a theoretical framework where both finite dimensional and infinite dimensional linear inverse problems can be studied. We show how the size of the the basins of attraction of the minimizers of such problems is linked with the number of available measurements. This framework recovers known results about low-rank matrix estimation and off-the-grid sparse spike estimation, and it provides new results for Gaussian mixture estimation from linear measurements. keywords: low-dimensional models, non-convex methods, low-rank matrix recovery, off-the-grid sparse recovery, Gaussian mixture model estimation from linear measurements

    PROJECTED GRADIENT DESCENT FOR NON-CONVEX SPARSE SPIKE ESTIMATION

    Get PDF
    We propose an algorithm to perform sparse spike estimation from Fourier measurements. Based on theoretical results on non-convex optimization techniques for off-the-grid sparse spike estimation, we present a simple projected descent algorithm coupled with an initialization procedure. Our algorithm permits to estimate the positions of large numbers of Diracs in 2d from random Fourier measurements. This opens the way for practical estimation of such signals for imaging applications as the algorithm scales well with respect to the dimensions of the problem. We present, along with the algorithm, theoretical qualitative insights explaining the success of our algorithm

    Nonlinear Dynamics of Neural Circuits

    Get PDF

    Information Geometry

    Get PDF
    This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience
    corecore