9,146 research outputs found

    Distance colouring without one cycle length

    Get PDF
    We consider distance colourings in graphs of maximum degree at most dd and how excluding one fixed cycle length ℓ\ell affects the number of colours required as d→∞d\to\infty. For vertex-colouring and t≥1t\ge 1, if any two distinct vertices connected by a path of at most tt edges are required to be coloured differently, then a reduction by a logarithmic (in dd) factor against the trivial bound O(dt)O(d^t) can be obtained by excluding an odd cycle length ℓ≥3t\ell \ge 3t if tt is odd or by excluding an even cycle length ℓ≥2t+2\ell \ge 2t+2. For edge-colouring and t≥2t\ge 2, if any two distinct edges connected by a path of fewer than tt edges are required to be coloured differently, then excluding an even cycle length ℓ≥2t\ell \ge 2t is sufficient for a logarithmic factor reduction. For t≥2t\ge 2, neither of the above statements are possible for other parity combinations of ℓ\ell and tt. These results can be considered extensions of results due to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).Comment: 14 pages, 1 figur

    Star 5-edge-colorings of subcubic multigraphs

    Full text link
    The star chromatic index of a multigraph GG, denoted χs′(G)\chi'_{s}(G), is the minimum number of colors needed to properly color the edges of GG such that no path or cycle of length four is bi-colored. A multigraph GG is star kk-edge-colorable if χs′(G)≤k\chi'_{s}(G)\le k. Dvo\v{r}\'ak, Mohar and \v{S}\'amal [Star chromatic index, J Graph Theory 72 (2013), 313--326] proved that every subcubic multigraph is star 77-edge-colorable, and conjectured that every subcubic multigraph should be star 66-edge-colorable. Kerdjoudj, Kostochka and Raspaud considered the list version of this problem for simple graphs and proved that every subcubic graph with maximum average degree less than 7/37/3 is star list-55-edge-colorable. It is known that a graph with maximum average degree 14/514/5 is not necessarily star 55-edge-colorable. In this paper, we prove that every subcubic multigraph with maximum average degree less than 12/512/5 is star 55-edge-colorable.Comment: to appear in Discrete Mathematics. arXiv admin note: text overlap with arXiv:1701.0410

    Acyclic edge coloring of graphs

    Full text link
    An {\em acyclic edge coloring} of a graph GG is a proper edge coloring such that the subgraph induced by any two color classes is a linear forest (an acyclic graph with maximum degree at most two). The {\em acyclic chromatic index} \chiup_{a}'(G) of a graph GG is the least number of colors needed in an acyclic edge coloring of GG. Fiam\v{c}\'{i}k (1978) conjectured that \chiup_{a}'(G) \leq \Delta(G) + 2, where Δ(G)\Delta(G) is the maximum degree of GG. This conjecture is well known as Acyclic Edge Coloring Conjecture (AECC). A graph GG with maximum degree at most κ\kappa is {\em κ\kappa-deletion-minimal} if \chiup_{a}'(G) > \kappa and \chiup_{a}'(H) \leq \kappa for every proper subgraph HH of GG. The purpose of this paper is to provide many structural lemmas on κ\kappa-deletion-minimal graphs. By using the structural lemmas, we firstly prove that AECC is true for the graphs with maximum average degree less than four (\autoref{NMAD4}). We secondly prove that AECC is true for the planar graphs without triangles adjacent to cycles of length at most four, with an additional condition that every 55-cycle has at most three edges contained in triangles (\autoref{NoAdjacent}), from which we can conclude some known results as corollaries. We thirdly prove that every planar graph GG without intersecting triangles satisfies \chiup_{a}'(G) \leq \Delta(G) + 3 (\autoref{NoIntersect}). Finally, we consider one extreme case and prove it: if GG is a graph with Δ(G)≥3\Delta(G) \geq 3 and all the 3+3^{+}-vertices are independent, then \chiup_{a}'(G) = \Delta(G). We hope the structural lemmas will shed some light on the acyclic edge coloring problems.Comment: 19 page
    • …
    corecore