2,401 research outputs found

    Embedding Theorem for the automorphism group of the α-enumeration degrees

    Get PDF
    It is a theorem of classical Computability Theory that the automorphism group of the enumeration degrees D_e embeds into the automorphism group of the Turing degrees D_T . This follows from the following three statements: 1. D_T embeds to D_e , 2. D_T is an automorphism base for D_e, 3. D_T is definable in D_e . The first statement is trivial. The second statement follows from the Selman’s theorem: A ≤e B ⇐⇒ ∀X ⊆ ω[B ≤e X ⊕ complement(X) implies A ≤e X ⊕ complement(X)]. The third statement follows from the definability of a Kalimullin pair in the α-enumeration degrees D_e and the following theorem: an enumeration degree is total iff it is trivial or a join of a maximal Kalimullin pair. Following an analogous pattern, this thesis aims to generalize the results above to the setting of α-Computability theory. The main result of this thesis is Embedding Theorem: the automorphism group of the α-enumeration degrees D_αe embeds into the automorphism group of the α-degrees D_α if α is an infinite regular cardinal and assuming the axiom of constructibility V = L. If α is a general admissible ordinal, weaker results are proved involving assumptions on the megaregularity. In the proof of the definability of D_α in D_αe a helpful concept of α-rational numbers Q_α emerges as a generalization of the rational numbers Q and an analogue of hyperrationals. This is the most valuable theory development of this thesis with many potentially fruitful directions

    Problems on Polytopes, Their Groups, and Realizations

    Full text link
    The paper gives a collection of open problems on abstract polytopes that were either presented at the Polytopes Day in Calgary or motivated by discussions at the preceding Workshop on Convex and Abstract Polytopes at the Banff International Research Station in May 2005.Comment: 25 pages (Periodica Mathematica Hungarica, Special Issue on Discrete Geometry, to appear

    Pseudodeterminants and perfect square spanning tree counts

    Get PDF
    The pseudodeterminant pdet(M)\textrm{pdet}(M) of a square matrix is the last nonzero coefficient in its characteristic polynomial; for a nonsingular matrix, this is just the determinant. If \partial is a symmetric or skew-symmetric matrix then pdet(t)=pdet()2\textrm{pdet}(\partial\partial^t)=\textrm{pdet}(\partial)^2. Whenever \partial is the kthk^{th} boundary map of a self-dual CW-complex XX, this linear-algebraic identity implies that the torsion-weighted generating function for cellular kk-trees in XX is a perfect square. In the case that XX is an \emph{antipodally} self-dual CW-sphere of odd dimension, the pseudodeterminant of its kkth cellular boundary map can be interpreted directly as a torsion-weighted generating function both for kk-trees and for (k1)(k-1)-trees, complementing the analogous result for even-dimensional spheres given by the second author. The argument relies on the topological fact that any self-dual even-dimensional CW-ball can be oriented so that its middle boundary map is skew-symmetric.Comment: Final version; minor revisions. To appear in Journal of Combinatoric

    Generation of cubic graphs

    Get PDF
    We describe a new algorithm for the efficient generation of all non-isomorphic connected cubic graphs. Our implementation of this algorithm is more than 4 times faster than previous generators. The generation can also be efficiently restricted to cubic graphs with girth at least 4 or 5

    {\Gamma}-species, quotients, and graph enumeration

    Full text link
    The theory of {\Gamma}-species is developed to allow species-theoretic study of quotient structures in a categorically rigorous fashion. This new approach is then applied to two graph-enumeration problems which were previously unsolved in the unlabeled case-bipartite blocks and general k-trees.Comment: 84 pages, 10 figures, dissertatio
    corecore