499 research outputs found

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    A comparative analysis of classifiers in cancer prediction using multiple data mining techniques

    Get PDF
    In recent years, application of data mining methods in health industry has received increased attention from both health professionals and scholars. This paper presents a data mining framework for detecting breast cancer based on real data from one of Iran hospitals by applying association rules and the most commonly used classifiers. The former were adopted for reducing the size of datasets, while the latter were chosen for cancer prediction. A k-fold cross validation procedure was included for evaluating the performance of the proposed classifiers. Among the six classifiers used in this paper, support vector machine achieved the best results, with an accuracy of 93%. It is worth mentioning that the approach proposed can be applied for detecting other diseases as well

    Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications

    Get PDF
    Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies

    Using a combination of methodologies for improving medical information retrieval performance

    Get PDF
    This thesis presents three approaches to improve the current state of Medical Information Retrieval. At the time of this writing, the health industry is experiencing a massive change in terms of introducing technology into all aspects of health delivery. The work in this thesis involves adapting existing established concepts in the field of Information Retrieval to the field of Medical Information Retrieval. In particular, we apply subtype filtering, ICD-9 codes, query expansion, and re-ranking methods in order to improve retrieval on medical texts. The first method applies association rule mining and cosine similarity measures. The second method applies subtype filtering and the Apriori algorithm. And the third method uses ICD-9 codes in order to improve retrieval accuracy. Overall, we show that the current state of medical information retrieval has substantial room for improvement. Our first two methods do not show significant improvements, while our third approach shows an improvement of up to 20%

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    Review on Heart Disease Prediction System using Data Mining Techniques

    Get PDF
    Data mining is the computer based process of analyzing enormous sets of data and then extracting the meaning of the data. Data mining tools predict future trends, allowing business to make proactive, knowledge-driven decisions. Data mining tools can answer business questions that traditionally taken much time consuming to resolve. The huge amounts of data generated for prediction of heart disease are too complex and voluminous to be processed and analyzed by traditional methods. Data mining provides the methodology and technology to transform these mounds of data into useful information for decision making. By using data mining techniques it takes less time for the prediction of the disease with more accuracy. In this paper we survey different papers in which one or more algorithms of data mining used for the prediction of heart disease. Result from using neural networks is nearly 100% in one paper [10] and in [6]. So that the prediction by using data mining algorithm given efficient results. Applying data mining techniques to heart disease treatment data can provide as reliable performance as that achieved in diagnosing heart disease

    Improvement of alzheimer disease diagnosis accuracy using ensemble methods

    Get PDF
    Nowadays, there is a significant increase in the medical data that we should take advantage of that. The application of the machine learning via the data mining processes, such as data classification depends on using a single classification algorithm or those complained as ensemble models. The objective of this work is to improve the classification accuracy of previous results for Alzheimer disease diagnosing. The Decision Tree algorithm with three types of ensemble methods combined, which are Boosting, Bagging and Stacking. The clinical dataset from the Open Access Series of Imaging Studies (OASIS) was used in the experiments. The experimental results of the proposed approach were better than the previous work results. Where the Random Forest (Bagging) achieved the highest accuracy among all algorithms with 90.69%, while the lowest one was Stacking with 79.07%. All these results generated in this paper are higher in accuracy than that done before
    • …
    corecore