28,727 research outputs found

    Foundational principles for large scale inference: Illustrations through correlation mining

    Full text link
    When can reliable inference be drawn in the "Big Data" context? This paper presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics the dataset is often variable-rich but sample-starved: a regime where the number nn of acquired samples (statistical replicates) is far fewer than the number pp of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for "Big Data." Sample complexity however has received relatively less attention, especially in the setting when the sample size nn is fixed, and the dimension pp grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. We demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks

    Performance analysis and optimal selection of large mean-variance portfolios under estimation risk

    Full text link
    We study the consistency of sample mean-variance portfolios of arbitrarily high dimension that are based on Bayesian or shrinkage estimation of the input parameters as well as weighted sampling. In an asymptotic setting where the number of assets remains comparable in magnitude to the sample size, we provide a characterization of the estimation risk by providing deterministic equivalents of the portfolio out-of-sample performance in terms of the underlying investment scenario. The previous estimates represent a means of quantifying the amount of risk underestimation and return overestimation of improved portfolio constructions beyond standard ones. Well-known for the latter, if not corrected, these deviations lead to inaccurate and overly optimistic Sharpe-based investment decisions. Our results are based on recent contributions in the field of random matrix theory. Along with the asymptotic analysis, the analytical framework allows us to find bias corrections improving on the achieved out-of-sample performance of typical portfolio constructions. Some numerical simulations validate our theoretical findings
    • …
    corecore