11,779 research outputs found

    Constructions for orthogonal designs using signed group orthogonal designs

    Full text link
    Craigen introduced and studied signed group Hadamard matrices extensively and eventually provided an asymptotic existence result for Hadamard matrices. Following his lead, Ghaderpour introduced signed group orthogonal designs and showed an asymptotic existence result for orthogonal designs and consequently Hadamard matrices. In this paper, we construct some interesting families of orthogonal designs using signed group orthogonal designs to show the capability of signed group orthogonal designs in generation of different types of orthogonal designs.Comment: To appear in Discrete Mathematics (Elsevier). No figure

    New 22-designs from strong difference families

    Full text link
    Strong difference families are an interesting class of discrete structures which can be used to derive relative difference families. Relative difference families are closely related to 22-designs, and have applications in constructions for many significant codes, such as optical orthogonal codes and optical orthogonal signature pattern codes. In this paper, with a careful use of cyclotomic conditions attached to strong difference families, we improve the lower bound on the asymptotic existence results of (Fp×Fq,Fp×{0},k,λ)(\mathbb{F}_{p}\times \mathbb{F}_{q},\mathbb{F}_{p}\times \{0\},k,\lambda)-DFs for k∈{p,p+1}k\in\{p,p+1\}. We improve Buratti's existence results for 22-(13q,13,λ)(13q,13,\lambda) designs and 22-(17q,17,λ)(17q,17,\lambda) designs, and establish the existence of seven new 22-(v,k,λ)(v,k,\lambda) designs for (v,k,λ)∈{(694,7,2),(1576,8,1),(2025,9,1),(765,9,2),(1845,9,2),(459,9,4)(v,k,\lambda)\in\{(694,7,2),(1576,8,1),(2025,9,1),(765,9,2),(1845,9,2),(459,9,4), (783,9,4)}(783,9,4)\}.Comment: Version 1 is named "Improved cyclotomic conditions leading to new 2-designs: the use of strong difference families". Major revision according to the referees' comment

    Asymptotic existence of orthogonal designs

    Get PDF
    v, 115 leaves ; 29 cmAn orthogonal design of order n and type (si,..., se), denoted OD(n; si,..., se), is a square matrix X of order n with entries from {0, ±x1,..., ±xe}, where the Xj’s are commuting variables, that satisfies XX* = ^ ^g=1 sjx^j In, where X* denotes the transpose of X, and In is the identity matrix of order n. An asymptotic existence of orthogonal designs is shown. More precisely, for any Atuple (s1,..., se) of positive integers, there exists an integer N = N(s1,..., se) such that for each n > N, there is an OD(2n(s1 + ... + se); 2ns1,..., 2nse). This result of Chapter 5 complements a result of Peter Eades et al. which in turn implies that if the positive integers s1, s2,..., se are all highly divisible by 2, then there is a full orthogonal design of type (s1, s2,..., se). Some new classes of orthogonal designs related to weighing matrices are obtained in Chapter 3. In Chapter 4, we deal with product designs and amicable orthogonal designs, and a construction method is presented. Signed group orthogonal designs, a natural extension of orthogonal designs, are introduced in Chapter 6. Furthermore, an asymptotic existence of signed group orthogonal designs is obtained and applied to show the asymptotic existence of orthogonal designs

    Some non-existence and asymptotic existence results for weighing matrices

    Full text link
    Orthogonal designs and weighing matrices have many applications in areas such as coding theory, cryptography, wireless networking and communication. In this paper, we first show that if positive integer kk cannot be written as the sum of three integer squares, then there does not exist any skew-symmetric weighing matrix of order 4n4n and weight kk, where nn is an odd positive integer. Then we show that for any square kk, there is an integer N(k)N(k) such that for each n≥N(k)n\ge N(k), there is a symmetric weighing matrix of order nn and weight kk. Moreover, we improve some of the asymptotic existence results for weighing matrices obtained by Eades, Geramita and Seberry.Comment: To appear in International Journal of Combinatorics (Hindawi). in Int. J. Combin. (Feb 2016
    • …
    corecore