2 research outputs found

    Dynamic reconfiguration in distributed hard real-time systems

    Get PDF

    A testbed for embedded systems

    Get PDF
    Testing and Debugging are often the most difficult phase of software development. This is especially true of embedded systems which are usually concurrent, have real-time performance and correctness constraints and which execute in the field in an environment which may not permit internal scrutiny of the software behaviour. Although good software engineering practices help, they will never eliminate the need for testing and debugging. This is because failings in the specification and design are often only discovered through testing and understanding these failings and how to correct them comes from debugging. These observations suggest that embedded software should be designed in a way which makes testing and debugging easier and that tools which support these activities are required. Due to the often hostile environment in which the finished embedded system will function, it is necessary to have a platform which allows the software to be developed and tested "in vitro". The Testbed system achieves these goals by providing dynamic modification and process migration facilities for use during development as well as powerful monitoring and background debugging support. These facilities are built on a basic run-time harness supporting an event-driven programming model with a global communication mechanism. This programming model is well suited to the reactive nature of embedded systems. The main research contributions of this work are in the areas of finding deadlock-free, path-optimal routings for networks and of dynamic modification with automated conversion of data which may include pointers
    corecore