5,645 research outputs found

    Reason Maintenance - State of the Art

    Get PDF
    This paper describes state of the art in reason maintenance with a focus on its future usage in the KiWi project. To give a bigger picture of the field, it also mentions closely related issues such as non-monotonic logic and paraconsistency. The paper is organized as follows: first, two motivating scenarios referring to semantic wikis are presented which are then used to introduce the different reason maintenance techniques

    A Calculus for Generating Ground Explanations

    No full text
    Full Paper: Applications II: Mathematical Structures, Explanation Generation, SecurityInternational audienceWe present a modification of the superposition calculus that is meant to generate explanations why a set of clauses is satisfiable. This process is related to abductive reasoning, and the explanations generated are clauses constructed over so-called abductive constants. We prove the correctness and completeness of the calculus in the presence of redundancy elimination rules, and develop a sufficient condition guaranteeing its termination; this sufficient condition is then used to prove that all possible explanations can be generated in finite time for several classes of clause sets, including many of interest to the SMT community. We propose a procedure that generates a set of explanations that should be useful to a human user and conclude by suggesting several extensions to this novel approach

    Unique key Horn functions

    Get PDF
    Given a relational database, a key is a set of attributes such that a value assignment to this set uniquely determines the values of all other attributes. The database uniquely defines a pure Horn function hh, representing the functional dependencies. If the knowledge of the attribute values in set AA determines the value for attribute vv, then AvA\rightarrow v is an implicate of hh. If KK is a key of the database, then KvK\rightarrow v is an implicate of hh for all attributes vv. Keys of small sizes play a crucial role in various problems. We present structural and complexity results on the set of minimal keys of pure Horn functions. We characterize Sperner hypergraphs for which there is a unique pure Horn function with the given hypergraph as the set of minimal keys. Furthermore, we show that recognizing such hypergraphs is co-NP-complete already when every hyperedge has size two. On the positive side, we identify several classes of graphs for which the recognition problem can be decided in polynomial time. We also present an algorithm that generates the minimal keys of a pure Horn function with polynomial delay. By establishing a connection between keys and target sets, our approach can be used to generate all minimal target sets with polynomial delay when the thresholds are bounded by a constant. As a byproduct, our proof shows that the Minimum Key problem is at least as hard as the Minimum Target Set Selection problem with bounded thresholds.Comment: 12 pages, 5 figure
    corecore