12,650 research outputs found

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded

    Distributed Methods for Computing Approximate Equilibria

    Get PDF
    We present a new, distributed method to compute approximate Nash equilibria in bimatrix games. In contrast to previous approaches that analyze the two payoff matrices at the same time (for example, by solving a single LP that combines the two players payoffs), our algorithm first solves two independent LPs, each of which is derived from one of the two payoff matrices, and then compute approximate Nash equilibria using only limited communication between the players. Our method has several applications for improved bounds for efficient computations of approximate Nash equilibria in bimatrix games. First, it yields a best polynomial-time algorithm for computing \emph{approximate well-supported Nash equilibria (WSNE)}, which guarantees to find a 0.6528-WSNE in polynomial time. Furthermore, since our algorithm solves the two LPs separately, it can be used to improve upon the best known algorithms in the limited communication setting: the algorithm can be implemented to obtain a randomized expected-polynomial-time algorithm that uses poly-logarithmic communication and finds a 0.6528-WSNE. The algorithm can also be carried out to beat the best known bound in the query complexity setting, requiring O(nlogn)O(n \log n) payoff queries to compute a 0.6528-WSNE. Finally, our approach can also be adapted to provide the best known communication efficient algorithm for computing \emph{approximate Nash equilibria}: it uses poly-logarithmic communication to find a 0.382-approximate Nash equilibrium

    Constant Rank Bimatrix Games are PPAD-hard

    Full text link
    The rank of a bimatrix game (A,B) is defined as rank(A+B). Computing a Nash equilibrium (NE) of a rank-00, i.e., zero-sum game is equivalent to linear programming (von Neumann'28, Dantzig'51). In 2005, Kannan and Theobald gave an FPTAS for constant rank games, and asked if there exists a polynomial time algorithm to compute an exact NE. Adsul et al. (2011) answered this question affirmatively for rank-11 games, leaving rank-2 and beyond unresolved. In this paper we show that NE computation in games with rank 3\ge 3, is PPAD-hard, settling a decade long open problem. Interestingly, this is the first instance that a problem with an FPTAS turns out to be PPAD-hard. Our reduction bypasses graphical games and game gadgets, and provides a simpler proof of PPAD-hardness for NE computation in bimatrix games. In addition, we get: * An equivalence between 2D-Linear-FIXP and PPAD, improving a result by Etessami and Yannakakis (2007) on equivalence between Linear-FIXP and PPAD. * NE computation in a bimatrix game with convex set of Nash equilibria is as hard as solving a simple stochastic game. * Computing a symmetric NE of a symmetric bimatrix game with rank 6\ge 6 is PPAD-hard. * Computing a (1/poly(n))-approximate fixed-point of a (Linear-FIXP) piecewise-linear function is PPAD-hard. The status of rank-22 games remains unresolved

    Path Coupling Using Stopping Times and Counting Independent Sets and Colourings in Hypergraphs

    Full text link
    We give a new method for analysing the mixing time of a Markov chain using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree Delta of a vertex and the minimum size m of an edge satisfy m>= 2Delta+1. We also show that the Glauber dynamics for proper q-colourings of a hypergraph mixes rapidly if m>= 4 and q > Delta, and if m=3 and q>=1.65Delta. We give related results on the hardness of exact and approximate counting for both problems.Comment: Simpler proof of main theorem. Improved bound on mixing time. 19 page

    Parameterized Two-Player Nash Equilibrium

    Full text link
    We study the computation of Nash equilibria in a two-player normal form game from the perspective of parameterized complexity. Recent results proved hardness for a number of variants, when parameterized by the support size. We complement those results, by identifying three cases in which the problem becomes fixed-parameter tractable. These cases occur in the previously studied settings of sparse games and unbalanced games as well as in the newly considered case of locally bounded treewidth games that generalizes both these two cases

    Single-Elimination Brackets Fail to Approximate Copeland Winner

    Get PDF
    Single-elimination (SE) brackets appear commonly in both sports tournaments and the voting theory literature. In certain tournament models, they have been shown to select the unambiguously-strongest competitor with optimum probability. By contrast, we reevaluate SE brackets through the lens of approximation, where the goal is to select a winner who would beat the most other competitors in a round robin (i.e., maximize the Copeland score), and find them lacking. Our primary result establishes the approximation ratio of a randomly-seeded SE bracket is 2^{- Theta(sqrt{log n})}; this is underwhelming considering a 1/2 ratio is achieved by choosing a winner uniformly at random. We also establish that a generalized version of the SE bracket performs nearly as poorly, with an approximation ratio of 2^{- Omega(sqrt[4]{log n})}, addressing a decade-old open question in the voting tree literature
    corecore