349 research outputs found

    The approximability of non-Boolean satisfiability problems and restricted integer programming

    Get PDF
    AbstractIn this paper we present improved approximation algorithms for two classes of maximization problems defined in Barland et al. (J. Comput. System Sci. 57(2) (1998) 144). Our factors of approximation substantially improve the previous known results and are close to the best possible. On the other hand, we show that the approximation results in the framework of Barland et al. hold also in the parallel setting, and thus we have a new common framework for both computational settings. We prove almost tight non-approximability results, thus solving a main open question of Barland et al.We obtain the results through the constraint satisfaction problem over multi-valued domains, for which we develop approximation algorithms and show non-approximability results. Our parallel approximation algorithms are based on linear programming and random rounding; they are better than previously known sequential algorithms. The non-approximability results are based on new recent progress in the fields of probabilistically checkable proofs and multi-prover one-round proof systems

    Parallelism with limited nondeterminism

    Get PDF
    Computational complexity theory studies which computational problems can be solved with limited access to resources. The past fifty years have seen a focus on the relationship between intractable problems and efficient algorithms. However, the relationship between inherently sequential problems and highly parallel algorithms has not been as well studied. Are there efficient but inherently sequential problems that admit some relaxed form of highly parallel algorithm? In this dissertation, we develop the theory of structural complexity around this relationship for three common types of computational problems. Specifically, we show tradeoffs between time, nondeterminism, and parallelizability. By clearly defining the notions and complexity classes that capture our intuition for parallelizable and sequential problems, we create a comprehensive framework for rigorously proving parallelizability and non-parallelizability of computational problems. This framework provides the means to prove whether otherwise tractable problems can be effectively parallelized, a need highlighted by the current growth of multiprocessor systems. The views adopted by this dissertation—alternate approaches to solving sequential problems using approximation, limited nondeterminism, and parameterization—can be applied practically throughout computer science

    Fixed-Parameter Approximability of Boolean MinCSPs

    Get PDF
    The minimum unsatisfiability version of a constraint satisfaction problem (CSP) asks for an assignment where the number of unsatisfied constraints is minimum possible, or equivalently, asks for a minimum-size set of constraints whose deletion makes the instance satisfiable. For a finite set Gamma of constraints, we denote by CSP(Gamma) the restriction of the problem where each constraint is from Gamma. The polynomial-time solvability and the polynomial-time approximability of CSP(Gamma) were fully characterized by [Khanna et al. SICOMP 2000]. Here we study the fixed-parameter (FP-) approximability of the problem: given an instance and an integer k, one has to find a solution of size at most g(k) in time f(k)n^{O(1)} if a solution of size at most k exists. We especially focus on the case of constant-factor FP-approximability. Our main result classifies each finite constraint language Gamma into one of three classes: (1) CSP(Gamma) has a constant-factor FP-approximation; (2) CSP(Gamma) has a (constant-factor) FP-approximation if and only if Nearest Codeword has a (constant-factor) FP-approximation; (3) CSP(Gamma) has no FP-approximation, unless FPT=W[P]. We show that problems in the second class do not have constant-factor FP-approximations if both the Exponential-Time Hypothesis (ETH) and the Linear PCP Conjecture (LPC) hold. We also show that such an approximation would imply the existence of an FP-approximation for the k-Densest Subgraph problem with ratio 1-epsilon for any epsilon>0

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems
    • …
    corecore