1,130 research outputs found

    Quantitative analysis of networked environments to improve performance of information systems

    Get PDF
    In this thesis we encounter networks in three contexts i) as the citation networks between documents in citation databases CiteSeer and DBLP, ii) as the structure of e-government websites that is navigated by users and iii) as the social network of users of a photo-sharing site Flickr and a social networking site Yahoo!360. We study the properties of networks present in real datasets, what are the effects of their structure and how this structure can be exploited. We analyze the citation networks between computer science publications and compare them to those described in Physics community. We also demonstrate the bias of citation databases collected autonomously and present mathematical models of this bias. We then analyze the link structure of three websites extracted by exhaustive crawls. We perform a user study with 134 participants on these websites in an lab. We discuss the structure of the link networks and the performance of subjects in locating information on these websites. We finally exploit the knowledge of users' social network to provide higher quality recommendations than current collaborative filtering techniques and demonstrate the performance benefit on two real datasets.Katedra softwarového inženýrstvíDepartment of Software EngineeringFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    FCAIR 2012 Formal Concept Analysis Meets Information Retrieval Workshop co-located with the 35th European Conference on Information Retrieval (ECIR 2013) March 24, 2013, Moscow, Russia

    Get PDF
    International audienceFormal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classifiation. The area came into being in the early 1980s and has since then spawned over 10000 scientific publications and a variety of practically deployed tools. FCA allows one to build from a data table with objects in rows and attributes in columns a taxonomic data structure called concept lattice, which can be used for many purposes, especially for Knowledge Discovery and Information Retrieval. The Formal Concept Analysis Meets Information Retrieval (FCAIR) workshop collocated with the 35th European Conference on Information Retrieval (ECIR 2013) was intended, on the one hand, to attract researchers from FCA community to a broad discussion of FCA-based research on information retrieval, and, on the other hand, to promote ideas, models, and methods of FCA in the community of Information Retrieval

    On Applications of Relational Data

    Get PDF
    With the advances of technology and the popularity of the Internet, a large amount of data is being generated and collected. Much of these data is relational data, which describe how people and things, or entities, are related to one another. For example, data from sale transactions on e-commerce websites tell us which customers buy or view which products. Analyzing the known relationships from relational data can help us to discover knowledge that can benefit businesses, organizations, and our lives. For instance, learning the products that are commonly bought together allows businesses to recommend products to customers and increase their sales. Hidden or new relationships can also be inferred based on relational data. In addition, based on the connections among the entities, we can approximate the level of relatedness between two entities, even though their relationship may be hard to observe or quantify. This research aims to explore novel applications of relational data that will help to improve our life in various aspects, such as improving business operations, improving experiences in using online services, and improving health care services. In applying relational data in any domain, there are two common challenges. First, the size of the data can be massive, but many applications require that results are obtained within a short time. Second, relational data are often noisy and incomplete. Many relationships are extracted automatically from text resources, and hence they are prone to errors. Our goal is not only to propose novel applications of relational data but also to develop techniques and algorithms that will facilitate and make such applications practical. This work addresses three novel applications of relational data. The first application is to use relational data to improve user experiences in online video sharing services. Second, we propose the use of relational data to find entities that are closely related to one another. Such problems arise in various domains, such as product recommendation and query suggestion. Third, we propose the use of relational data to assist medical practitioners in drug prescription. For these applications, we introduce several techniques and algorithms to address the aforementioned challenges in using relational data. Our approaches are evaluated extensively to demonstrate their effectiveness. The approaches proposed in this work not only can be used in the specific applications we discuss but also can help to facilitate and promote the use of relational data in other application domains

    Hybrid mobile computing for connected autonomous vehicles

    Get PDF
    With increasing urbanization and the number of cars on road, there are many global issues on modern transport systems, Autonomous driving and connected vehicles are the most promising technologies to tackle these issues. The so-called integrated technology connected autonomous vehicles (CAV) can provide a wide range of safety applications for safer, greener and more efficient intelligent transport systems (ITS). As computing is an extreme component for CAV systems,various mobile computing models including mobile local computing, mobile edge computing and mobile cloud computing are proposed. However it is believed that none of these models fits all CAV applications, which have highly diverse quality of service (QoS) requirements such as communication delay, data rate, accuracy, reliability and/or computing latency.In this thesis, we are motivated to propose a hybrid mobile computing model with objective of overcoming limitations of individual models and maximizing the performances for CAV applications.In proposed hybrid mobile computing model three basic computing models and/or their combinations are chosen and applied to different CAV applications, which include mobile local computing, mobile edge computing and mobile cloud computing. Different computing models and their combinations are selected according to the QoS requirements of the CAV applications.Following the idea, we first investigate the job offloading and allocation of computing and communication resources at the local hosts and external computing centers with QoS aware and resource awareness. Distributed admission control and resource allocation algorithms are proposed including two baseline non-cooperative algorithms and a matching theory based cooperative algorithm. Experiment results demonstrate the feasibility of the hybrid mobile computing model and show large improvement on the service quality and capacity over existing individual computing models. The matching algorithm also largely outperforms the baseline non-cooperative algorithms.In addition, two specific use cases of the hybrid mobile computing for CAV applications are investigated: object detection with mobile local computing where only local computing resources are used, and movie recommendation with mobile cloud computing where remote cloud resources are used. For object detection, we focus on the challenges of detecting vehicles, pedestrians and cyclists in driving environment and propose three methods to an existing CNN based object detector. Large detection performance improvement is obtained over the KITTI benchmark test dataset. For movie recommendation we propose two recommendation models based on a general framework of integrating machine learning and collaborative filtering approach.The experiment results on Netix movie dataset show that our models are very effective for cold start items recommendatio

    Composition de services basée sur les relations sociales entre objets dans l’IoT Service composition based on social relations between things in IoT

    Get PDF
    With the rapid development of service-oriented computing applications and social Internet ofthings (SIoT), it is becoming more and more difficult for end-users to find relevant services to create value-added composite services in this big data environment. Therefore, this work proposes S-SCORE (Social Service Composition based on Recommendation), an approach for interactive web services composition in SIoT ecosystem for end-users. The main contribution of this work is providing a novel recommendation approach, which enables to discover and suggest trustworthy and personalized web services that are suitable for composition. The first proposed model of recommendation aims to face the problem of information overload, which enables to discover services and provide personalized suggestions for users without sacrificing the recommendation accuracy. To validate the performance of our approach, seven variant algorithms of different approaches (popularity-based, user-based and item-based) are compared using MovieLens 20M dataset. The experiments show that our model improves the recommendation accuracy by 12% increase with the highest score among compared methods. Additionally it outperforms the compared models in diversity over all lengths of recommendation lists. The second proposed approach is a novel recommendation mechanism for service composition, which enables to suggest trustworthy and personalized web services that are suitable for composition. The process of recommendation consists of online and offline stages. In the offline stage, two models of similarity computation are presented. Firstly, an improved users’ similarity model is provided to filter the set of advisors for an active user. Then, a new service collaboration model is proposed that based on functional and non-functional features of services, which allows providing a set of collaborators for the active service. The online phase makes rating prediction of candidate services based on a hybrid algorithm that based on collaborative filtering technique. The proposed method gives considerable improvement on the prediction accuracy. Firstly, it achieves the lowest value in MAE (Mean Absolute Error) metric and the highest coverage values than other compared traditional collaborative filtering-based prediction approaches
    corecore