9,757 research outputs found

    Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films

    Get PDF
    The outstanding electrical and mechanical properties of graphene make it very attractive for several applications, Nanoelectronics above all. However a reproducible and non destructive way to produce high quality, large-scale area, single layer graphene sheets is still lacking. Chemical Vapour Deposition of graphene on Cu catalytic thin films represents a promising method to reach this goal, because of the low temperatures (T < 900 Celsius degrees) involved during the process and of the theoretically expected monolayer self-limiting growth. On the contrary such self-limiting growth is not commonly observed in experiments, thus making the development of techniques allowing for a better control of graphene growth highly desirable. Here we report about the local ablation effect, arising in Raman analysis, due to the heat transfer induced by the laser incident beam onto the graphene sample.Comment: v1:9 pages, 8 figures, submitted to SpringerPlus; v2: 11 pages, PDFLaTeX, 9 figures, revised peer-reviewed version resubmitted to SpringerPlus; 1 figure added, figure 1 and 4 replaced,typos corrected, "Results and discussion" section significantly extended to better explain etching mechanism and features of Raman spectra, references adde

    Understanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene

    Full text link
    The non-covalent functionalisation of graphene is an attractive strategy to alter the surface chemistry of graphene without damaging its superior electrical and mechanical properties. Using the facile method of aqueous-phase functionalisation on large-scale CVD-grown graphene, we investigated the formation of different packing densities in self-assembled monolayers (SAMs) of perylene bisimide derivatives and related this to the amount of substrate contamination. We were able to directly observe wet-chemically deposited SAMs in scanning tunnelling microscopy (STM) on transferred CVD graphene and revealed that the densely packed perylene ad-layers adsorb with the conjugated {\pi}-system of the core perpendicular to the graphene substrate. This elucidation of the non-covalent functionalisation of graphene has major implications on controlling its surface chemistry and opens new pathways for adaptable functionalisation in ambient conditions and on the large scale.Comment: 27 pages (including SI), 10 figure

    The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition

    Full text link
    The growth of graphene on copper by atmospheric pressure chemical vapor deposition in a system free of pumping equipment is investigated. The emphasis is put on the necessity of hydrogen presence during graphene synthesis and cooling. In the absence of hydrogen during the growth step or cooling at slow rate, weak carbon coverage, consisting mostly of oxidized and amorphous carbon, is obtained on the copper catalyst. The oxidation originates from the inevitable occurrence of residual oxidizing impurities in the reactor's atmosphere. Graphene with appreciable coverage can be grown within the vacuum-free furnace only upon admitting hydrogen during the growth step. After formation, it is preserved from the destructive effect of residual oxidizing contaminants once exposure at high temperature is minimized by fast cooling or hydrogen flow. Under these conditions, micrometer-sized hexagon-shaped graphene domains of high structural quality are achieved.Comment: Accepted in Carbo

    Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC

    Get PDF
    We present a new fabrication method for epitaxial graphene on SiC which enables the growth of ultra-smooth defect- and bilayer-free graphene sheets with an unprecedented reproducibility, a necessary prerequisite for wafer-scale fabrication of high quality graphene-based electronic devices. The inherent but unfavorable formation of high SiC surface terrace steps during high temperature sublimation growth is suppressed by rapid formation of the graphene buffer layer which stabilizes the SiC surface. The enhanced nucleation is enforced by decomposition of polymer adsorbates which act as a carbon source. With most of the steps well below 0.75 nm pure monolayer graphene without bilayer inclusions is formed with lateral dimensions only limited by the size of the substrate. This makes the polymer assisted sublimation growth technique the most promising method for commercial wafer scale epitaxial graphene fabrication. The extraordinary electronic quality is evidenced by quantum resistance metrology at 4.2 K with until now unreached precision and high electron mobilities on mm scale devices.Comment: 20 pages, 6 Figure

    Optical Probing of Electronic Interaction between Graphene and Hexagonal Boron Nitride

    Full text link
    Even weak van der Waals (vdW) adhesion between two-dimensional solids may perturb their various materials properties owing to their low dimensionality. Although the electronic structure of graphene has been predicted to be modified by the vdW interaction with other materials, its optical characterization has not been successful. In this report, we demonstrate that Raman spectroscopy can be utilized to detect a few % decrease in the Fermi velocity (vF) of graphene caused by the vdW interaction with underlying hexagonal boron nitride (hBN). Our study also establishes Raman spectroscopic analysis which enables separation of the effects by the vdW interaction from those by mechanical strain or extra charge carriers. The analysis reveals that spectral features of graphene on hBN are mainly affected by change in vF and mechanical strain, but not by charge doping unlike graphene supported on SiO2 substrates. Graphene on hBN was also found to be less susceptible to thermally induced hole doping.Comment: 19 pages, 4 figure
    corecore