6,303 research outputs found

    The OMII Software – Demonstrations and Comparisons between two different deployments for Client-Server Distributed Systems

    No full text
    This paper describes the key elements of the OMII software and the scenarios which OMII software can be deployed to achieve distributed computing in the UK e-Science Community, where two different deployments for Client-Server distributed systems are demonstrated. Scenarios and experiments for each deployment have been described, with its advantages and disadvantages compared and analyzed. We conclude that our first deployment is more relevant for system administrators or developers, and the second deployment is more suitable for users’ perspective which they can send and check job status for hundred job submissions

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    Simulating the universe on an intercontinental grid of supercomputers

    Full text link
    Understanding the universe is hampered by the elusiveness of its most common constituent, cold dark matter. Almost impossible to observe, dark matter can be studied effectively by means of simulation and there is probably no other research field where simulation has led to so much progress in the last decade. Cosmological N-body simulations are an essential tool for evolving density perturbations in the nonlinear regime. Simulating the formation of large-scale structures in the universe, however, is still a challenge due to the enormous dynamic range in spatial and temporal coordinates, and due to the enormous computer resources required. The dynamic range is generally dealt with by the hybridization of numerical techniques. We deal with the computational requirements by connecting two supercomputers via an optical network and make them operate as a single machine. This is challenging, if only for the fact that the supercomputers of our choice are separated by half the planet, as one is located in Amsterdam and the other is in Tokyo. The co-scheduling of the two computers and the 'gridification' of the code enables us to achieve a 90% efficiency for this distributed intercontinental supercomputer.Comment: Accepted for publication in IEEE Compute
    • 

    corecore