1,339 research outputs found

    Stability Analysis of Frame Slotted Aloha Protocol

    Full text link
    Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency Identification (RFID) systems as the de facto standard in tag identification. However, very limited work has been done on the stability of FSA despite its fundamental importance both on the theoretical characterisation of FSA performance and its effective operation in practical systems. In order to bridge this gap, we devote this paper to investigating the stability properties of FSA by focusing on two physical layer models of practical importance, the models with single packet reception and multipacket reception capabilities. Technically, we model the FSA system backlog as a Markov chain with its states being backlog size at the beginning of each frame. The objective is to analyze the ergodicity of the Markov chain and demonstrate its properties in different regions, particularly the instability region. By employing drift analysis, we obtain the closed-form conditions for the stability of FSA and show that the stability region is maximised when the frame length equals the backlog size in the single packet reception model and when the ratio of the backlog size to frame length equals in order of magnitude the maximum multipacket reception capacity in the multipacket reception model. Furthermore, to characterise system behavior in the instability region, we mathematically demonstrate the existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor

    Throughput analysis of ALOHA with cooperative diversity

    Get PDF
    Cooperative transmissions emulate multi-antenna systems and can improve the quality of signal reception. In this paper, we propose and analyze a cross layer random access scheme, C-ALOHA, that enables cooperative transmissions in the context of ALOHA system. Our analysis shows that over a fading channel C-ALOHA can improve the throughput by 30%, as compared to standard ALOHA protocol

    Delay distributions of slotted ALOHA and CSMA

    Get PDF
    We derive the closed-form delay distributions of slotted ALOHA and nonpersistent carrier sense multiple access (CSMA) protocols under steady state. Three retransmission policies are analyzed. We find that under a binary exponential backoff retransmission policy, finite average delay and finite delay variance can be guaranteed for G<2S and G<4S/3, respectively, where G is the channel traffic and S is the channel throughput. As an example, in slotted ALOHA, S<(ln2)/2 and S<3(ln4-ln3)/4 are the operating ranges for finite first and second delay moments. In addition, the blocking probability and delay performance as a function of r/sub max/ (maximum number of retransmissions allowed) is also derived

    On the Stability of Contention Resolution Diversity Slotted ALOHA

    Get PDF
    In this paper a Time Division Multiple Access (TDMA) based Random Access (RA) channel with Successive Interference Cancellation (SIC) is considered for a finite user population and reliable retransmission mechanism on the basis of Contention Resolution Diversity Slotted ALOHA (CRDSA). A general mathematical model based on Markov Chains is derived which makes it possible to predict the stability regions of SIC-RA channels, the expected delays in equilibrium and the selection of parameters for a stable channel configuration. Furthermore the model enables the estimation of the average time before reaching instability. The presented model is verified against simulations and numerical results are provided for comparison of the stability of CRDSA versus the stability of traditional Slotted ALOHA (SA). The presented results show that CRDSA has not only a high gain over SA in terms of throughput but also in its stability.Comment: 10 pages, 12 figures This paper is submitted to the IEEE Transactions on Communications for possible publication. The IEEE copyright notice applie

    ALOHA With Collision Resolution(ALOHA-CR): Theory and Software Defined Radio Implementation

    Full text link
    A cross-layer scheme, namely ALOHA With Collision Resolution (ALOHA-CR), is proposed for high throughput wireless communications in a cellular scenario. Transmissions occur in a time-slotted ALOHA-type fashion but with an important difference: simultaneous transmissions of two users can be successful. If more than two users transmit in the same slot the collision cannot be resolved and retransmission is required. If only one user transmits, the transmitted packet is recovered with some probability, depending on the state of the channel. If two users transmit the collision is resolved and the packets are recovered by first over-sampling the collision signal and then exploiting independent information about the two users that is contained in the signal polyphase components. The ALOHA-CR throughput is derived under the infinite backlog assumption and also under the assumption of finite backlog. The contention probability is determined under these two assumptions in order to maximize the network throughput and maintain stability. Queuing delay analysis for network users is also conducted. The performance of ALOHA-CR is demonstrated on the Wireless Open Access Research Platform (WARP) test-bed containing five software defined radio nodes. Analysis and test-bed results indicate that ALOHA-CR leads to significant increase in throughput and reduction of service delays

    Adaptive algorithms for improving the throughput in an indoor mobile s-aloha ds-cdma system

    Get PDF
    This paper presents a novel Adaptive DSCDMA Slotted-ALOHA packet random access scheme with transmitter-based spreading codes for mobiles. It is aimed at improving the throughput and message delay delivery when traffic load values below the saturation point of the conventional DS-CDMA Slotted-ALOHA system are sensed in the channel. For this purpose, one Mobile and two Base Station assisted algorithms are envisaged to control the change of the transmission rate according to the traffic load. These algorithms revealed that the optimum behavior, obtained using a Markov Chain model, may be almost reached at a low complexity cost.Peer ReviewedPostprint (published version

    Status Updates Over Unreliable Multiaccess Channels

    Full text link
    Applications like environmental sensing, and health and activity sensing, are supported by networks of devices (nodes) that send periodic packet transmissions over the wireless channel to a sink node. We look at simple abstractions that capture the following commonalities of such networks (a) the nodes send periodically sensed information that is temporal and must be delivered in a timely manner, (b) they share a multiple access channel and (c) channels between the nodes and the sink are unreliable (packets may be received in error) and differ in quality. We consider scheduled access and slotted ALOHA-like random access. Under scheduled access, nodes take turns and get feedback on whether a transmitted packet was received successfully by the sink. During its turn, a node may transmit more than once to counter channel uncertainty. For slotted ALOHA-like access, each node attempts transmission in every slot with a certain probability. For these access mechanisms we derive the age of information (AoI), which is a timeliness metric, and arrive at conditions that optimize AoI at the sink. We also analyze the case of symmetric updating, in which updates from different nodes must have the same AoI. We show that ALOHA-like access, while simple, leads to AoI that is worse by a factor of about 2e, in comparison to scheduled access

    L-band and SHF multiple access schemes for the MSAT system

    Get PDF
    The first generation of the Canadian Mobile Satellite (MSAT) system, planned to be operational in the early 1990s, will provide voice and data services to land, aeronautical, and maritime mobile terminals within the Canadian land mass and its territorial waters. The system will be managed by a centralized Demand Assignment Multiple Access (DAMA) control system. Users will request a communication channel by communicating with the DAMA Control System (DCS) via the appropriate signalling channels. Several access techniques for both L-band and SHF signalling channels have been investigated. For the L-band, Slotted Aloha (SA) and Reservation Aloha (RA), combined with a token scheme, are discussed here. The results of Telesat studies to date indicate that SA, when combined with token scheme, provides the most efficient access and resource management tool in a mobile propagation environment. For SHF signalling channels, slim time division multiple access (TDMA) and SA have been considered as the most suitable candidate schemes. In view of the operational environment of the SHF links, provision of a very short channel access delay and a relatively high packet success rate are highly desirable. Studies carried out generally favor slim-TDMA as the most suitable approach for SHF signalling channels
    • …
    corecore