21,228 research outputs found

    Microscope Image Analysis in LabVIEW

    Get PDF
    Bakalářská práce se zabývá analýzou a zpracováním mikroskopického obrazu v prostředí LabVIEW. V této práci je popsaná teorie ke zpracování a analýze obrazu, dále realizace měřícího zařízení a akvizice obrazu pomocí kamery. V prostředí LabVIEW je vytvořen funkční software pro analýzu obrazu. Na základě nastudovaných funkcí z LabVIEW je software rozdělen na předzpracování, zpracování a analýzu obrazu a zpracování barevného obrazu. Software umožňuje měnit parametry použitých funkcí.Bachelor’s thesis deals with the microscope image analysis and microscope image processing in LabVIEW. The thesis describes the theory of image analysis and image processing, the implementation of the measuring devices and the image acquisition using a camera. In an environment LabVIEW program was created image analysis software. The software is divided into image preprocessing, image processing, image analysis and color image processing. The software allows changing the parameters in used functions.

    Analysis of microscopic image with cell structures in LabVIEW.

    Get PDF
    Tato práce se zabývá metodami akvizice, zpracování a analýzy obrazu z optického mikroskopu a jejich možným využitím. Kromě teoretického rozboru problému je zde navržen algoritmus, který realizuje segmentaci obrazu, detekci a počítání objektů a rozměřování objektů a struktur. Podle algoritmu je v prostředí LabVIEW vytvořen funkční software.This work deals with the methods of acquisition, image processing and analysis of optical microscope and their potential use. Besides theoretical analysis of the problem is also designed an algorithm that implements image segmentation, detection and counting of objects and dimensioning of objects and structures. According to the algorithm is developed in LabVIEW functional software.

    Keeping track of worm trackers

    Get PDF
    C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O2 and CO2 concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral “outputs”. Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement)

    A LabVIEW® based generic CT scanner control software platform

    Get PDF
    UGCT, the Centre for X-ray tomography at Ghent University (Belgium) does research on X-ray tomography and its applications. This includes the development and construction of state-of-the-art CT scanners for scientific research. Because these scanners are built for very different purposes they differ considerably in their physical implementations. However, they all share common principle functionality. In this context a generic software platform was developed using LabVIEW (R) in order to provide the same interface and functionality on all scanners. This article describes the concept and features of this software, and its potential for tomography in a research setting. The core concept is to rigorously separate the abstract operation of a CT scanner from its actual physical configuration. This separation is achieved by implementing a sender-listener architecture. The advantages are that the resulting software platform is generic, scalable, highly efficient, easy to develop and to extend, and that it can be deployed on future scanners with minimal effort

    Master slave en-face OCT/SLO

    Get PDF
    Master Slave optical coherence tomography (MS-OCT) is an OCT method that does not require resampling of data and can be used to deliver en-face images from several depths simultaneously. As the MS-OCT method requires important computational resources, the number of multiple depth en-face images that can be produced in real-time is limited. Here, we demonstrate progress in taking advantage of the parallel processing feature of the MS-OCT technology. Harnessing the capabilities of graphics processing units (GPU)s, information from 384 depth positions is acquired in one raster with real time display of up to 40 en-face OCT images. These exhibit comparable resolution and sensitivity to the images produced using the conventional Fourier domain based method. The GPU facilitates versatile real time selection of parameters, such as the depth positions of the 40 images out of the set of 384 depth locations, as well as their axial resolution. In each updated displayed frame, in parallel with the 40 en-face OCT images, a scanning laser ophthalmoscopy (SLO) lookalike image is presented together with two B-scan OCT images oriented along rectangular directions. The thickness of the SLO lookalike image is dynamically determined by the choice of number of en-face OCT images displayed in the frame and the choice of differential axial distance between them

    Event Recognition Using Signal Spectrograms in Long Pulse Experiments

    Get PDF
    As discharge duration increases, real-time complex analysis of the signal becomes more important. In this context, data acquisition and processing systems must provide models for designing experiments which use event oriented plasma control. One example of advanced data analysis is signal classification. The off-line statistical analysis of a large number of discharges provides information to develop algorithms for the determination of the plasma parameters from measurements of magnetohydrodinamic waves, for example, to detect density fluctuations induced by the Alfvén cascades using morphological patterns. The need to apply different algorithms to the signals and to address different processing algorithms using the previous results necessitates the use of an event-based experiment. The Intelligent Test and Measurement System platform is an example of architecture designed to implement distributed data acquisition and real-time processing systems. The processing algorithm sequence is modeled using an event-based paradigm. The adaptive capacity of this model is based on the logic defined by the use of state machines in SCXML. The Intelligent Test and Measurement System platform mixes a local multiprocessing model with a distributed deployment of services based on Jini

    Introducing instrumentation and data acquisition to mechanical engineering students using LabVIEW

    Get PDF
    For several years, LabVIEW has been used within the Department of Mechanical Engineering at the University of Strathclyde as the basis for introducing the basic concepts and practice of data acquisition, and more generally, instrumentation, to postgraduate engineering students and undergraduate project students. The objectives of introducing LabVIEW within the curriculum were to expose students to instrumentation and experimental analysis, and to create courseware that could be used flexibly for a range of students. It was also important that staff time for laboratory work be kept to manageable levels. A course module was developed which allows engineering students with very little or no previous knowledge of instrumentation or programming to become acquainted with the basics of programming, experimentation and data acquisition. The basic course structure has been used to teach both undergraduates and postgraduates as well as laboratory technical staff. The paper describes the objectives of the use of LabVIEW for teaching, the structure of the module developed, and the response of students who have been subjected to the course, and how it is intended to expand the delivery to greater student numbers

    Development and implementation of a LabVIEW based SCADA system for a meshed multi-terminal VSC-HVDC grid scaled platform

    Get PDF
    This project is oriented to the development of a Supervisory, Control and Data Acquisition (SCADA) software to control and supervise electrical variables from a scaled platform that represents a meshed HVDC grid employing National Instruments hardware and LabVIEW logic environment. The objective is to obtain real time visualization of DC and AC electrical variables and a lossless data stream acquisition. The acquisition system hardware elements have been configured, tested and installed on the grid platform. The system is composed of three chassis, each inside of a VSC terminal cabinet, with integrated Field-Programmable Gate Arrays (FPGAs), one of them connected via PCI bus to a local processor and the rest too via Ethernet through a switch. Analogical acquisition modules were A/D conversion takes place are inserted into the chassis. A personal computer is used as host, screen terminal and storing space. There are two main access modes to the FPGAs through the real time system. It has been implemented a Scan mode VI to monitor all the grid DC signals and a faster FPGA access mode VI to monitor one converter AC and DC values. The FPGA application consists of two tasks running at different rates and a FIFO has been implemented to communicate between them without data loss. Multiple structures have been tested on the grid platform and evaluated, ensuring the compliance of previously established specifications, such as sampling and scanning rate, screen refreshment or possible data loss. Additionally a turbine emulator was implemented and tested in Labview for further testing

    Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results

    Get PDF
    As shown in the \emph{EPR} paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is a non-local Theory. The Bell theorem and the successive experiments ruled out the possibility of explaining quantum correlations using only local hidden variables models. Some authors suggested that quantum correlations could be due to superluminal communications that propagate isotropically with velocity \emph{vt>cv_{t}>c} in a preferred reference frame. For finite values of \emph{vtv_{t}} and in some special cases, Quantum Mechanics and superluminal models lead to different predictions. So far, no deviations from the predictions of Quantum Mechanics have been detected and only lower bounds for the superluminal velocities \emph{vtv_{t}} have been established. Here we describe a new experiment that increases the maximum detectable superluminal velocities and we give some preliminary results.Comment: 16 pages, 10 figures, Eighth International Workshop DICE2016, Castiglioncello (IT), September 12-16, 201
    corecore