4,018 research outputs found

    Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating

    Full text link
    We characterize the mechanical quality factor of micro-oscillators covered by a highly reflective coating. We test an approach to the reduction of mechanical losses, that consists in limiting the size of the coated area to reduce the strain and the consequent energy loss in this highly dissipative component. Moreover, a mechanical isolation stage is incorporated in the device. The results are discussed on the basis of an analysis of homogeneous and non-homogeneous losses in the device and validated by a set of Finite-Element models. The contributions of thermoelastic dissipation and coating losses are separated and the measured quality factors are found in agreement with the calculated values, while the absence of unmodeled losses confirms that the isolation element integrated in the device efficiently uncouples the dynamics of the mirror from the support system. Also the resonant frequencies evaluated by Finite-Element models are in good agreement with the experimental data, and allow the estimation of the Young modulus of the coating. The models that we have developed and validated are important for the design of oscillating micro-mirrors with high quality factor and, consequently, low thermal noise. Such devices are useful in general for high sensitivity sensors, and in particular for experiments of quantum opto-mechanics

    Combined electronic nose and tongue for a flavour sensing system

    Get PDF
    We present a novel, smart sensing system developed for the flavour analysis of liquids. The system comprises both a so-called "electronic tongue" based on shear horizontal surface acoustic wave (SH-SAW) sensors analysing the liquid phase and a so-called "electronic nose" based on chemFET sensors analysing the gaseous phase. Flavour is generally understood to be the overall experience from the combination of oral and nasal stimulation and is principally derived from a combination of the human senses of taste (gustation) and smell (olfaction). Thus, by combining two types of microsensors, an artificial flavour sensing system has been developed. Initial tests conducted with different liquid samples, i.e. water, orange juice and milk (of different fat content), resulted in 100% discrimination using principal components analysis; although it was found that there was little contribution from the electronic nose. Therefore further flavour experiments were designed to demonstrate the potential of the combined electronic nose/tongue flavour system. Consequently, experiments were conducted on low vapour pressure taste-biased solutions and high vapour pressure, smell-biased solutions. Only the combined flavour analysis system could achieve 100% discrimination between all the different liquids. We believe that this is the first report of a SAW-based analysis system that determines flavour through the combination of both liquid and headspace analysis

    On-a-chip microdischarge thruster arrays inspired by photonic device technology for plasma television

    No full text
    This study shows that the practical scaling of a hollow cathode thruster device to MEMS level should be possible albeit with significant divergence from traditional design. The main divergence is the need to operate at discharge pressures between 1-3bar to maintain emitter diameter pressure products of similar values to conventional hollow cathode devices. Without operating at these pressures emitter cavity dimensions become prohibitively large for maintenance of the hollow cathode effect and without which discharge voltage would be in the hundreds of volts as with conventional microdischarge devices. In addition this requires sufficiently constrictive orifice diameters in the 10”m – 50”m range for single cathodes or <5”m larger arrays. Operation at this pressure results in very small Debye lengths (4 -5.2pm) and leads to large reductions in effective work function (0.3 – 0.43eV) via the Schottky effect. Consequently, simple work function lowering compounds such as lanthanum hexaboride (LaB6) can be used to reduce operating temperature without the significant manufacturing complexity of producing porous impregnated thermionic emitters as with macro scale hollow cathodes, while still operating <1200°C at the emitter surface. The literature shows that LaB6 can be deposited using a variety of standard microfabrication techniques

    High Density Through Silicon Via (TSV)

    Get PDF
    The Through Silicon Via (TSV) process developed by Silex provides down to 30 micrometers pitch for through wafer connections in up to 600 micrometers thick substrates. Integrated with MEMS designs it enables significantly reduced die size and true "Wafer Level Packaging" - features that are particularly important in consumer market applications. The TSV technology also enables integration of advanced interconnect functions in optical MEMS, sensors and microfluidic devices. In addition the Via technology opens for very interesting possibilities considering integration with CMOS processing. With several companies using the process already today, qualified volume manufacturing in place and a line-up of potential users, the process is becoming a standard in the MEMS industry. We provide a introduction to the via formation process and also present some on the novel solutions made available by the technology.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Using Micro-Raman Spectroscopy to Assess MEMS Si/SiO2 Membranes Exhibiting Negative Spring Constant Behavior

    Get PDF
    We introduce a novel micro-mechanical structure that exhibits two regions of stable linear positive and negative stiffness. Springs, cantilevers, beams and any other geometry that display an increasing return force that is proportional to the displacement can be considered to have a “Hookean” positive spring constant, or stiffness. Less well known is the opposite characteristic of a reducing return force for a given deflection, or negative stiffness. Unfortunately many simple negative stiffness structures exhibit unstable buckling and require additional moving components during deflection to avoid deforming out of its useful shape. In Micro-Electro-Mechanical Systems (MEMS) devices, buckling caused by stress at the interface of silicon and thermally grown SiO2 causes tensile and compressive forces that will warp structures if the silicon layer is thin enough. The 1 mm2 membrane structures presented here utilizes this effect but overcome this limitation and empirically demonstrates linearity in both regions. The Si/SiO2 membranes presented deflect ~17 ÎŒm from their pre-released position. The load deflection curves produced exhibit positive linear stiffness with an inflection point holding nearly constant with a slight negative stiffness. Depositing a 0.05 ÎŒm titanium and 0.3 ÎŒm layer of gold on top of the Si/SiO2 membrane reduces the initial deflection to ~13.5 ÎŒm. However, the load deflection curve produced illustrates both a linear positive and negative spring constant with a fairly sharp inflection point. These results are potentially useful to selectively tune the spring constant of mechanical structures used in MEMS. The structures presented are manufactured using typical micromachining techniques and can be fabricated in-situ with other MEMS devices

    Out-of-plane Characterization of Silicon-on-insulator Multiuser MEMS Processes-based Tri-axis Accelerometer

    Get PDF
    In this paper, we discuss the analysis of out-of-plane characterization of a capacitive tri-axis accelerometer fabricated using SOI MUMPS (Silicon-on Insulator Multi user MEMS Processes) process flow and the results are compared with simulated results. The device is designed with wide operational 3 dB bandwidth suitable for measuring vibrations in industrial applications. The wide operating range is obtained by optimizing serpentine flexures at the four corners of the proof mass. The accelerometer structure was simulated using COMSOL Multiphysics and the displacement sensitivity was observed as 1.2978 nm/g along z-axis. The simulated resonant frequency of the device was found to be 13 kHz along z axis. The dynamic characterization of the fabricated tri-axis accelerometer produces the out-of-plane vibration mode frequency as 13 kHz which is same as the simulated result obtained in z-axis

    Low-Cost, Water Pressure Sensing and Leakage Detection Using Micromachined Membranes

    Get PDF
    This work presents the only known SOI membrane approach, using Microelectromechanical systems (MEMS) fabrication techniques, to address viable water leakage sensing requirements at low cost. In this research, membrane thickness and diameter are used in concert to target specific stiffness values that will result in targeted operational pressure ranges of approximately 0-120 psi. A MEMS membrane device constructed using silicon-on-insulator (SOI) wafers, has been tested and packaged for the water environment. MEMS membrane arrays will be used to determine operational pressure range by bursting.Two applications of these SOI membranes in aqueous environment are investigated in this research. The first one is water pressure sensing. We demonstrate that robustness of these membranes depends on their thickness and surface area. Their mechanical strength and robustness against applied pressure are determined using Finite Element Analysis (FEA). The mechanical response of a membrane pressure sensor is determined by physical factors such as surface area, thickness and material properties. The second application of this device is water leak detection. In devices such as pressure sensors, microvalves and micropumps, membranes can be subjected to immense pressure that causes them to fail or burst. However, this event can be used to indicate the precise pressure level that malfunction occurred. These membrane arrays can be used to determine pressure values by bursting. We discuss the background information related to the proposed device: MEMS fabrication processes (especially related to proposed device), common MEMS materials, general micromachining process steps, packaging and wire bonding techniques, and common micromachined pressure sensors. Besides, FEA on SOLIDWORKS simulation module is utilized to understand membrane sensitivity and robustness. In addition, we focus on theories supporting the simulated results. We also discuss the device fabrication process, which consists of the tested device’s fabrication process, Deep Reactive Ion Etching (DRIE) for membrane formation, two different realizable fabrication technique (depending on sensing material) of sensing element, metal contact pads, and connectors deposition. In addition, a brief description and operation procedures of the device fabrication tools are provided as well. We also include detailed electrical and mechanical testing procedures and the collected data

    Metal silicide/poly-Si Schottky diodes for uncooled microbolometers

    Get PDF
    Nickel silicide Schottky diodes formed on polycrystalline Si films are proposed as temperature sensors of monolithic uncooled microbolometer IR focal plane arrays. Structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by means of transmission electron microscopy. The Ni silicide is identified as multi-phase compound composed by 20 to 40% of Ni3Si, 30 to 60% of Ni2Si and 10 to 30% of NiSi with probable minor content of NiSi2 at the silicide/poly-Si interface. Rectification ratios of the Schottky diodes vary from ~100 to ~20 for the temperature increasing from 22 to 70C; they exceed 1000 at 80K. A barrier of ~0.95 eV is found to control the photovoltage spectra at room temperature. A set of barriers is observed in photo-emf spectra at 80K and attributed to the Ni-silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current are found to vary from 0.3 to 0.6%/K for forward biasing and around 2.5%/K for reverse biasing of the diodes.Comment: 18 pages, 7 figure
    • 

    corecore