13,763 research outputs found

    Landscape metrics and indices : an overview of their use in landscape research

    Get PDF
    The aim of this overview paper is to analyze the use of various landscape metrics and landscape indices for the characterization of landscape structure and various processes at both landscape and ecosystem level. We analyzed the appearance of the terms landscape metrics/indexes/indices in combination with seven main categories in the field of landscape ecology [1) use/selection and misuse of metrics, 2) biodiversity and habitat analysis; 3) water quality; 4) evaluation of the landscape pattern and its change; 5) urban landscape pattern, road network; 6) aesthetics of landscape; 7) management, planning and monitoring] in the titles, abstracts and/or key words of research papers published in international peer-reviewed scientific journals indexed by the Institute of Science Information (ISI) Web of Science (WoS) from 1994 to October 2008. Most of the landscape metrics and indices are used concerning biodiversity and habitat analysis, and also the evaluation of landscape pattern and its change (up to 25 articles per year). There are only a few articles on the relationships of landscape metrics/indices/indexes to social aspects and landscape perception

    String Theory - From Physics to Metaphysics

    Get PDF
    Currently, string theory represents the only advanced approach to a unification of all interactions, including gravity. In spite of the more than thirty years of its existence it did not make any empirically testable predictions. And it is completely unknown which physically interpretable principles could form the basis of string theory. At the moment, "string theory" is no theory at all, but rather a labyrinthic structure of mathematical procedures and intuitions which get their justification from the fact that they, at least formally, reproduce general relativity and the standard model of elementary particle physics as low energy approximations. However, there are now strong indications that string theory does not only reproduce the dynamics and symmetries of our standard model, but a plethora of different scenarios with different low energy nomologies and symmetries. String theory seems to describe not only our world, but an immense landscape of possible worlds. So far, all attempts to find a selection principle which could be motivated intratheoretically remained without success. So, recently the idea that the low energy nomology of our world, and therefore also the observable phenomenology, could be the result of an anthropic selection from a vast arena of nomologically different scenarios entered string theory. Although multiverse scenarios and anthropic selection are not only motivated by string theory, but lead also to a possible explanation for the fine tuning of the universe, they are concepts which transcend the framework defined by the epistemological and methodological rules which conventionally form the basis of physics as an empirical science.Comment: 30 pages, submitted to "Physics and Philosophy" (Online-Journal

    Reducing risk of poor diet quality through food biodiversity

    Get PDF

    Model based test suite minimization using metaheuristics

    Get PDF
    Software testing is one of the most widely used methods for quality assurance and fault detection purposes. However, it is one of the most expensive, tedious and time consuming activities in software development life cycle. Code-based and specification-based testing has been going on for almost four decades. Model-based testing (MBT) is a relatively new approach to software testing where the software models as opposed to other artifacts (i.e. source code) are used as primary source of test cases. Models are simplified representation of a software system and are cheaper to execute than the original or deployed system. The main objective of the research presented in this thesis is the development of a framework for improving the efficiency and effectiveness of test suites generated from UML models. It focuses on three activities: transformation of Activity Diagram (AD) model into Colored Petri Net (CPN) model, generation and evaluation of AD based test suite and optimization of AD based test suite. Unified Modeling Language (UML) is a de facto standard for software system analysis and design. UML models can be categorized into structural and behavioral models. AD is a behavioral type of UML model and since major revision in UML version 2.x it has a new Petri Nets like semantics. It has wide application scope including embedded, workflow and web-service systems. For this reason this thesis concentrates on AD models. Informal semantics of UML generally and AD specially is a major challenge in the development of UML based verification and validation tools. One solution to this challenge is transforming a UML model into an executable formal model. In the thesis, a three step transformation methodology is proposed for resolving ambiguities in an AD model and then transforming it into a CPN representation which is a well known formal language with extensive tool support. Test case generation is one of the most critical and labor intensive activities in testing processes. The flow oriented semantic of AD suits modeling both sequential and concurrent systems. The thesis presented a novel technique to generate test cases from AD using a stochastic algorithm. In order to determine if the generated test suite is adequate, two test suite adequacy analysis techniques based on structural coverage and mutation have been proposed. In terms of structural coverage, two separate coverage criteria are also proposed to evaluate the adequacy of the test suite from both perspectives, sequential and concurrent. Mutation analysis is a fault-based technique to determine if the test suite is adequate for detecting particular types of faults. Four categories of mutation operators are defined to seed specific faults into the mutant model. Another focus of thesis is to improve the test suite efficiency without compromising its effectiveness. One way of achieving this is identifying and removing the redundant test cases. It has been shown that the test suite minimization by removing redundant test cases is a combinatorial optimization problem. An evolutionary computation based test suite minimization technique is developed to address the test suite minimization problem and its performance is empirically compared with other well known heuristic algorithms. Additionally, statistical analysis is performed to characterize the fitness landscape of test suite minimization problems. The proposed test suite minimization solution is extended to include multi-objective minimization. As the redundancy is contextual, different criteria and their combination can significantly change the solution test suite. Therefore, the last part of the thesis describes an investigation into multi-objective test suite minimization and optimization algorithms. The proposed framework is demonstrated and evaluated using prototype tools and case study models. Empirical results have shown that the techniques developed within the framework are effective in model based test suite generation and optimizatio

    Representative Landscapes in the Forested Area of Canada

    Get PDF
    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada’s land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or “exemplar”—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada’s ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada’s forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach

    Invertebrate distribution patterns and river typology for the implementation of the water framework directive in Martinique, French Lesser Antilles

    Get PDF
    Over the past decade, Europe's Water Framework Directive provided compelling reasons for developing tools for the biological assessment of freshwater ecosystem health in member States. Yet, the lack of published study for Europe's overseas regions reflects minimal knowledge of the distribution patterns of aquatic species in Community's outermost areas. Benthic invertebrates (84 taxa) and land cover, physical habitat and water chemistry descriptors (26 variables) were recorded at fifty-one stations in Martinique, French Lesser Antilles. Canonical Correspondence Analysis and Ward's algorithm were used to bring out patterns in community structure in relation to environmental conditions, and variation partitioning was used to specify the influence of geomorphology and anthropogenic disturbance on invertebrate communities. Species richness decreased from headwater to lowland streams, and species composition changed from northern to southern areas. The proportion of variation explained by geomorphological variables was globally higher than that explained by anthropogenic variables. Geomorphology and land cover played key roles in delineating ecological sub-regions for the freshwater biota. Despite this and the small surface area of Martinique (1080 km²), invertebrate communities showed a clear spatial turnover in composition and biological traits (e.g., insects, crustaceans and molluscs) in relation to natural conditions
    corecore