1,111 research outputs found

    Stabilization Control of the Differential Mobile Robot Using Lyapunov Function and Extended Kalman Filter

    Get PDF
    This paper presents the design of a control model to navigate the differential mobile robot to reach the desired destination from an arbitrary initial pose. The designed model is divided into two stages: the state estimation and the stabilization control. In the state estimation, an extended Kalman filter is employed to optimally combine the information from the system dynamics and measurements. Two Lyapunov functions are constructed that allow a hybrid feedback control law to execute the robot movements. The asymptotical stability and robustness of the closed loop system are assured. Simulations and experiments are carried out to validate the effectiveness and applicability of the proposed approach.Comment: arXiv admin note: text overlap with arXiv:1611.07112, arXiv:1611.0711

    Review article: locomotion systems for ground mobile robots in unstructured environments

    Get PDF
    Abstract. The world market of mobile robotics is expected to increase substantially in the next 20 yr, surpassing the market of industrial robotics in terms of units and sales. Important fields of application are homeland security, surveillance, demining, reconnaissance in dangerous situations, and agriculture. The design of the locomotion systems of mobile robots for unstructured environments is generally complex, particularly when they are required to move on uneven or soft terrains, or to climb obstacles. This paper sets out to analyse the state-of-the-art of locomotion mechanisms for ground mobile robots, focussing on solutions for unstructured environments, in order to help designers to select the optimal solution for specific operating requirements. The three main categories of locomotion systems (wheeled - W, tracked - T and legged - L) and the four hybrid categories that can be derived by combining these main locomotion systems are discussed with reference to maximum speed, obstacle-crossing capability, step/stair climbing capability, slope climbing capability, walking capability on soft terrains, walking capability on uneven terrains, energy efficiency, mechanical complexity, control complexity and technology readiness. The current and future trends of mobile robotics are also outlined

    Robust adaptive controller for wheel mobile robot with disturbances and wheel slips

    Get PDF
    In this paper an observer based adaptive control algorithm is built for wheel mobile robot (WMR) with considering the system uncertainties, input disturbances, and wheel slips. Firstly, the model of the kinematic and dynamic loops is shown with presence of the disturbances and system uncertainties. Next, the adaptive controller for nonlinear mismatched disturbance systems based on the disturbances observer is presented in detail. The controller includes two parts, the first one is for the stability purpose and the later is for the disturbances compensation. After that this control scheme is applied for both two loops of the system. In this paper, the stability of the closed system which consists of two control loops and the convergence of the observers is mathematically analysed based on the Lyapunov theory. Moreover, the proposed model does not require the complex calculation so it is easy for the implementation. Finally, the simulation model is built for presented method and the existed one to verify the correctness and the effectiveness of the proposed scheme. The simulation results show that the introduced controller gives the good performances even that the desired trajectory is complicated and the working condition is hard

    Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System of Warehouse Mobile Robot

    Get PDF
    One of the technologies in the industrial world that utilizes robots is the delivery of goods in warehouses, especially in the goods distribution process. This is very useful, especially in terms of resource efficiency and reducing human error. The existing system in this process usually uses the line follower concept on the robot's path with a camera sensor to determine the destination location. If the line and destination are not detected by the sensor or camera, the robot's navigation system will experience an error. it can happen if the sensor is dirty or the track is faded. The aim of this research is to develop a robot navigation system for efficient goods delivery in warehouses by integrating odometry and Dijkstra's algorithm for path planning. Holonomic robot is a robot that moves freely without changing direction to produce motion with high mobility. Dijkstra's algorithm is added to the holonomic robot to obtain the fastest trajectory. by calculating the distance of the node that has not been passed from the initial position, if in the calculation the algorithm finds a shorter distance it will be stored as a new route replacing the previously recorded route. the distance traversed by the djikstra algorithm is 780 mm while a distance of 1100 mm obtains the other routes. The time for using the Djikstra method is proven to be 5.3 seconds faster than the track without the Djikstra method with the same speed. Uneven track terrain can result in a shift in the robot's position so that it can affect the travel data. The conclusion is that odometry and Dijkstra's algorithm as a planning system and finding the shortest path are very efficient for warehouse robots to deliver goods than ordinary line followers without Dijkstra, both in terms of distance and travel time

    A Modular Approach for a Family of Ground Mobile Robots

    Get PDF
    This paper deals with Epi.q, a family of mobile robots whose main characteristic is a wheel-legged hybrid locomotion. These multi-purpose robots can be successfully exploited for security and surveillance tasks. The document presents state of the art security robotics, the Epi.q mechanical architecture, the concept behind the robot driving unit, three prototypes and the design of a new on

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information
    • …
    corecore