60 research outputs found

    SYNTHESIS AND EVALUATION OF ANTIMICROBIAL ACTIVITY OF PHENYL AND FURAN-2-YL[1,2,4] TRIAZOLO[4,3-a]QUINOXALIN-4(5H)-ONE AND THEIR HYDRAZONE PRECURSORS

    Get PDF
    A variety of 1-(s-phenyl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (3a-3h) and 1-(s-furan-2-yl)-[1,2,4]triazolo[4,3- a]quinoxalin-4(5H)-one (5a-d) were synthesized from thermal annelation of corresponding hydrazones (2a-h) and (4a-d) respectively in the presence of ethylene glycol which is a high boiling solvent. The structures of the compounds prepared were confirmed by analytical and spectral data. Also, the newly synthesized compounds were evaluated for possible antimicrobial activity. 3-(2-(4-hydroxylbenzylidene)hydrazinyl)quinoxalin-2(1H)-one (2e) was the most active antibacterial agent while 1-(5-Chlorofuran-2-yl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (5c) stood out as the most potent antifungal agent

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems

    Get PDF
    Over the last decade, scientists have dreamed about the development of a bioresorbable technology that exploits a new class of electrical, optical, and sensing components able to operate in physiological conditions for a prescribed time and then disappear, being made of materials that fully dissolve in vivo with biologically benign byproducts upon external stimulation. The final goal is to engineer these components into transient implantable systems that directly interact with organs, tissues, and biofluids in real-time, retrieve clinical parameters, and provide therapeutic actions tailored to the disease and patient clinical evolution, and then biodegrade without the need for device-retrieving surgery that may cause tissue lesion or infection. Here, the major results achieved in bioresorbable technology are critically reviewed, with a bottom-up approach that starts from a rational analysis of dissolution chemistry and kinetics, and biocompatibility of bioresorbable materials, then moves to in vivo performance and stability of electrical and optical bioresorbable components, and eventually focuses on the integration of such components into bioresorbable systems for clinically relevant applications. Finally, the technology readiness levels (TRLs) achieved for the different bioresorbable devices and systems are assessed, hence the open challenges are analyzed and future directions for advancing the technology are envisaged

    Graphene inspired sensing devices

    Get PDF
    Graphene’s exciting characteristics such as high mechanical strength, tuneable electrical prop- erties, high thermal conductivity, elasticity, large surface-to-volume ratio, make it unique and attractive for a plethora of applications including gas and liquid sensing. Adsorption, the phys- ical bonding of molecules on solid surfaces, has huge impact on the electronic properties of graphene. We use this to develop gas sensing devices with faster response time by suspending graphene over large area (cm^2) on silicon nanowire arrays (SiNWAs). These are fabricated by two-step metal-assisted chemical etching (MACE) and using a home-developed polymer-assisted graphene transfer (PAGT) process. The advantage of suspending graphene is the removal of diffusion-limited access to the adsorption sites at the interface between graphene and its support. By modifying the Langmuir adsorption model and fitting the experimental response curves, we find faster response times for both ammonia and acetone vapours. The use of suspended graphene improved the overall response, based on speed and amplitude of response, by up to 750% on average. This device could find applications in biomedical breath analysis for diseases such lung cancer, asthma, kidney failure and more. Taking advantage of the mechanical strength of graphene and using the developed PAGT process, we transfer it on commercial (CMOS) Ion-Sensitive Field-Effect Transistor (ISFET) arrays. The deposition of graphene on the top sensing layer reduces drift that results from the surface modification during exposure to electrolyte while improving the overall performance by up to about 10^13 % and indicates that the ISFET can operate with metallic sensing membrane and not only with insulating materials as confirmed by depositing Au on the gate surface. Post- processing of the ISFET top surface by reactive ion plasma etching, proved that the physical location of trapped charge lies within the device structure. The process improved its overall performance by about 105 %. The post-processing of the ISFET could be applied for sensor performance in any of its applications including pH sensing for DNA sequencing and glucose monitoring.Open Acces

    Towards Improving the Properties and Furthering Acceptance of Advanced Technology Nuclear Fuels

    Get PDF
    To avoid detrimental environmental impacts from climate change, the world community needs to push for the use of clean energy technologies. Development of proposed advanced technology nuclear fuels supports efforts to ensure nuclear energy is included as a non-carbon emitting source of electricity generation. Advanced technology nuclear fuels, also referred to as accident tolerant fuels (ATFs), have received renewed interest for use in the current nuclear reactor fleet as well as in advanced reactor technologies due to their high uranium loading, desirable thermophysical properties, and performance under irradiation as compared to the benchmark oxide fuel. A limiting consideration for the implementation of these ATFs is their poor performance in oxidative and corrosion conditions, as well as challenges associated with synthesis and fabrication. As a full understanding of these ATFs has not been achieved, this work aims to advance the state of knowledge related to these fuels and their composites in corrosion conditions, their grain growth mechanisms, and includes efforts to improve thermal conductivity in the benchmark oxide fuel using these ATFs. Chapter Two presents a study of uranium mononitride (UN) and UN composites with uranium dioxide (UO2) under hydrothermal corrosion conditions to assess the mechanism of degradation at elevated temperatures, identified as secondary phase formation at the grain boundaries leading to pellet collapse. Chapter Three combines experimental and theoretical studies of composite systems, UN-Zr and UN-Y, for the purposes of improving the corrosion resistance of monolithic UN. The results indicate the formation of undesirable secondary phases in the sintered materials and provided insight to the atomic level structural changes which occurred due to the addition of the metallic constituents. An extensive review (included as Appendices A, B, and C) of the state of the literature for oxidation performance of UN, triuranium disilicide (U3Si2), uranium carbide (UC), and uranium diboride (UB2), was performed to identify the challenges and opportunities to alloyed and composite architectures of these ATF candidates to mitigate corrosion behavior. In addition, an understanding of the microstructural evolution during the fabrication of various fuel forms, such as grain growth, is important in predicting its performance under irradiation (e.g., fracture, creep, fission gas release, thermal conductivity, etc.). Accordingly, it is important to understand the driving force behind grain growth and the factors which influence it. Chapter Four presents a fundamental study on grain growth in conventionally sintered UN. The study identified the most likely mechanism and proposed an activation energy for grain growth with a discussion on the factors that influenced it, as well as the lack of expected texture present in the sintered samples. Chapter Five describes work on successful incorporation of uranium diboride (UB2, another ATF candidate) to a UO2 matrix via conventional fabrication and sintering methods, for the purposes of improving overall thermal conductivity of the bulk composite. Presented together, this work provides foundational inquiry and analysis which can be used to further research on ATF candidates and assist in acceleration of qualifying these fuels for use in the current and future nuclear reactor fleets

    Energy, a continuing bibliography with indexes. Issue 33

    Get PDF
    This bibliography lists 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system from January 1, 1981 through March 31, 1981

    Laboratory directed research and development. FY 1995 progress report

    Full text link

    NASA Tech Briefs, Spring 1985

    Get PDF
    Topic include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    NASA Tech Briefs, Spring 1981

    Get PDF
    Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences
    • …
    corecore