2,404 research outputs found

    The zero-error randomized query complexity of the pointer function

    Get PDF
    The pointer function of G{\"{o}}{\"{o}}s, Pitassi and Watson \cite{DBLP:journals/eccc/GoosP015a} and its variants have recently been used to prove separation results among various measures of complexity such as deterministic, randomized and quantum query complexities, exact and approximate polynomial degrees, etc. In particular, the widest possible (quadratic) separations between deterministic and zero-error randomized query complexity, as well as between bounded-error and zero-error randomized query complexity, have been obtained by considering {\em variants}~\cite{DBLP:journals/corr/AmbainisBBL15} of this pointer function. However, as was pointed out in \cite{DBLP:journals/corr/AmbainisBBL15}, the precise zero-error complexity of the original pointer function was not known. We show a lower bound of Ω~(n3/4)\widetilde{\Omega}(n^{3/4}) on the zero-error randomized query complexity of the pointer function on Θ(nlogn)\Theta(n \log n) bits; since an O~(n3/4)\widetilde{O}(n^{3/4}) upper bound is already known \cite{DBLP:conf/fsttcs/MukhopadhyayS15}, our lower bound is optimal up to a factor of \polylog\, n

    Towards Better Separation between Deterministic and Randomized Query Complexity

    Get PDF
    We show that there exists a Boolean function FF which observes the following separations among deterministic query complexity (D(F))(D(F)), randomized zero error query complexity (R0(F))(R_0(F)) and randomized one-sided error query complexity (R1(F))(R_1(F)): R1(F)=O~(D(F))R_1(F) = \widetilde{O}(\sqrt{D(F)}) and R0(F)=O~(D(F))3/4R_0(F)=\widetilde{O}(D(F))^{3/4}. This refutes the conjecture made by Saks and Wigderson that for any Boolean function ff, R0(f)=Ω(D(f))0.753..R_0(f)=\Omega({D(f)})^{0.753..}. This also shows widest separation between R1(f)R_1(f) and D(f)D(f) for any Boolean function. The function FF was defined by G{\"{o}}{\"{o}}s, Pitassi and Watson who studied it for showing a separation between deterministic decision tree complexity and unambiguous non-deterministic decision tree complexity. Independently of us, Ambainis et al proved that different variants of the function FF certify optimal (quadratic) separation between D(f)D(f) and R0(f)R_0(f), and polynomial separation between R0(f)R_0(f) and R1(f)R_1(f). Viewed as separation results, our results are subsumed by those of Ambainis et al. However, while the functions considerd in the work of Ambainis et al are different variants of FF, we work with the original function FF itself.Comment: Reference adde

    Separations in Query Complexity Based on Pointer Functions

    Get PDF
    In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function ff on n=2kn=2^k bits defined by a complete binary tree of NAND gates of depth kk, which achieves R0(f)=O(D(f)0.7537)R_0(f) = O(D(f)^{0.7537\ldots}). We show this is false by giving an example of a total boolean function ff on nn bits whose deterministic query complexity is Ω(n/log(n))\Omega(n/\log(n)) while its zero-error randomized query complexity is O~(n)\tilde O(\sqrt{n}). We further show that the quantum query complexity of the same function is O~(n1/4)\tilde O(n^{1/4}), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function gg on nn variables that has zero-error randomized query complexity Ω(n/log(n))\Omega(n/\log(n)) and bounded-error randomized query complexity R(g)=O~(n)R(g) = \tilde O(\sqrt{n}). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g)=O~(n)Q_E(g) = \tilde O(\sqrt{n}). These two functions show that the relations D(f)=O(R1(f)2)D(f) = O(R_1(f)^2) and R0(f)=O~(R(f)2)R_0(f) = \tilde O(R(f)^2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between QQ and R0R_0, a 3/23/2-power separation between QEQ_E and RR, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by \goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.Comment: 25 pages, 6 figures. Version 3 improves separation between Q_E and R_0 and updates reference

    Partition bound is quadratically tight for product distributions

    Get PDF
    Let f:{0,1}n×{0,1}n{0,1}f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\} be a 2-party function. For every product distribution μ\mu on {0,1}n×{0,1}n\{0,1\}^n \times \{0,1\}^n, we show that CC0.49μ(f)=O((logprt1/8(f)loglogprt1/8(f))2),\mathsf{CC}^\mu_{0.49}(f) = O\left(\left(\log \mathsf{prt}_{1/8}(f) \cdot \log \log \mathsf{prt}_{1/8}(f)\right)^2\right), where CCεμ(f)\mathsf{CC}^\mu_\varepsilon(f) is the distributional communication complexity of ff with error at most ε\varepsilon under the distribution μ\mu and prt1/8(f)\mathsf{prt}_{1/8}(f) is the {\em partition bound} of ff, as defined by Jain and Klauck [{\em Proc. 25th CCC}, 2010]. We also prove a similar bound in terms of IC1/8(f)\mathsf{IC}_{1/8}(f), the {\em information complexity} of ff, namely, CC0.49μ(f)=O((IC1/8(f)logIC1/8(f))2).\mathsf{CC}^\mu_{0.49}(f) = O\left(\left(\mathsf{IC}_{1/8}(f) \cdot \log \mathsf{IC}_{1/8}(f)\right)^2\right). The latter bound was recently and independently established by Kol [{\em Proc. 48th STOC}, 2016] using a different technique. We show a similar result for query complexity under product distributions. Let g:{0,1}n{0,1}g : \{0,1\}^n \rightarrow \{0,1\} be a function. For every bit-wise product distribution μ\mu on {0,1}n\{0,1\}^n, we show that QC0.49μ(g)=O((logqprt1/8(g)loglogqprt1/8(g))2),\mathsf{QC}^\mu_{0.49}(g) = O\left(\left( \log \mathsf{qprt}_{1/8}(g) \cdot \log \log\mathsf{qprt}_{1/8}(g) \right)^2 \right), where QCεμ(g)\mathsf{QC}^\mu_{\varepsilon}(g) is the distributional query complexity of ff with error at most ε\varepsilon under the distribution μ\mu and qprt1/8(g))\mathsf{qprt}_{1/8}(g)) is the {\em query partition bound} of the function gg. Partition bounds were introduced (in both communication complexity and query complexity models) to provide LP-based lower bounds for randomized communication complexity and randomized query complexity. Our results demonstrate that these lower bounds are polynomially tight for {\em product} distributions.Comment: The previous version of the paper erroneously stated the main result in terms of relaxed partition number instead of partition numbe

    Separations between Combinatorial Measures for Transitive Functions

    Get PDF
    The role of symmetry in Boolean functions f:{0,1}n{0,1}f:\{0,1\}^n \to \{0,1\} has been extensively studied in complexity theory. For example, symmetric functions, that is, functions that are invariant under the action of SnS_n, is an important class of functions in the study of Boolean functions. A function f:{0,1}n{0,1}f:\{0,1\}^n \to \{0,1\} is called transitive (or weakly-symmetric) if there exists a transitive group GG of SnS_n such that ff is invariant under the action of GG - that is the function value remains unchanged even after the bits of the input of ff are moved around according to some permutation σG\sigma \in G. Understanding various complexity measures of transitive functions has been a rich area of research for the past few decades. In this work, we study transitive functions in light of several combinatorial measures. We look at the maximum separation between various pairs of measures for transitive functions. Such study for general Boolean functions has been going on for past many years. The best-known results for general Boolean functions have been nicely compiled by Aaronson et. al (STOC, 2021). The separation between a pair of combinatorial measures is shown by constructing interesting functions that demonstrate the separation. But many of the celebrated separation results are via the construction of functions (like "pointer functions" from Ambainis et al. (JACM, 2017) and "cheat-sheet functions" Aaronson et al. (STOC, 2016)) that are not transitive. Hence, we don't have such separation between the pairs of measures for transitive functions. In this paper we show how to modify some of these functions to construct transitive functions that demonstrate similar separations between pairs of combinatorial measures

    The Skip Quadtree: A Simple Dynamic Data Structure for Multidimensional Data

    Full text link
    We present a new multi-dimensional data structure, which we call the skip quadtree (for point data in R^2) or the skip octree (for point data in R^d, with constant d>2). Our data structure combines the best features of two well-known data structures, in that it has the well-defined "box"-shaped regions of region quadtrees and the logarithmic-height search and update hierarchical structure of skip lists. Indeed, the bottom level of our structure is exactly a region quadtree (or octree for higher dimensional data). We describe efficient algorithms for inserting and deleting points in a skip quadtree, as well as fast methods for performing point location and approximate range queries.Comment: 12 pages, 3 figures. A preliminary version of this paper appeared in the 21st ACM Symp. Comp. Geom., Pisa, 2005, pp. 296-30

    Error-Correcting Data Structures

    Get PDF
    We study data structures in the presence of adversarial noise. We want to encode a given object in a succinct data structure that enables us to efficiently answer specific queries about the object, even if the data structure has been corrupted by a constant fraction of errors. This new model is the common generalization of (static) data structures and locally decodable error-correcting codes. The main issue is the tradeoff between the space used by the data structure and the time (number of probes) needed to answer a query about the encoded object. We prove a number of upper and lower bounds on various natural error-correcting data structure problems. In particular, we show that the optimal length of error-correcting data structures for the Membership problem (where we want to store subsets of size s from a universe of size n) is closely related to the optimal length of locally decodable codes for s-bit strings.Comment: 15 pages LaTeX; an abridged version will appear in the Proceedings of the STACS 2009 conferenc

    Optimal Separation and Strong Direct Sum for Randomized Query Complexity

    Get PDF
    We establish two results regarding the query complexity of bounded-error randomized algorithms. * Bounded-error separation theorem. There exists a total function f:{0,1}n{0,1}f : \{0,1\}^n \to \{0,1\} whose ϵ\epsilon-error randomized query complexity satisfies Rϵ(f)=Ω(R(f)log1ϵ)\overline{\mathrm{R}}_\epsilon(f) = \Omega( \mathrm{R}(f) \cdot \log\frac1\epsilon). * Strong direct sum theorem. For every function ff and every k2k \ge 2, the randomized query complexity of computing kk instances of ff simultaneously satisfies Rϵ(fk)=Θ(kRϵk(f))\overline{\mathrm{R}}_\epsilon(f^k) = \Theta(k \cdot \overline{\mathrm{R}}_{\frac\epsilon k}(f)). As a consequence of our two main results, we obtain an optimal superlinear direct-sum-type theorem for randomized query complexity: there exists a function ff for which R(fk)=Θ(klogkR(f))\mathrm{R}(f^k) = \Theta( k \log k \cdot \mathrm{R}(f)). This answers an open question of Drucker (2012). Combining this result with the query-to-communication complexity lifting theorem of G\"o\"os, Pitassi, and Watson (2017), this also shows that there is a total function whose public-coin randomized communication complexity satisfies Rcc(fk)=Θ(klogkRcc(f))\mathrm{R}^{\mathrm{cc}} (f^k) = \Theta( k \log k \cdot \mathrm{R}^{\mathrm{cc}}(f)), answering a question of Feder, Kushilevitz, Naor, and Nisan (1995).Comment: 15 pages, 2 figures, CCC 201
    corecore