91,710 research outputs found

    A Grammatical Inference Approach to Language-Based Anomaly Detection in XML

    Full text link
    False-positives are a problem in anomaly-based intrusion detection systems. To counter this issue, we discuss anomaly detection for the eXtensible Markup Language (XML) in a language-theoretic view. We argue that many XML-based attacks target the syntactic level, i.e. the tree structure or element content, and syntax validation of XML documents reduces the attack surface. XML offers so-called schemas for validation, but in real world, schemas are often unavailable, ignored or too general. In this work-in-progress paper we describe a grammatical inference approach to learn an automaton from example XML documents for detecting documents with anomalous syntax. We discuss properties and expressiveness of XML to understand limits of learnability. Our contributions are an XML Schema compatible lexical datatype system to abstract content in XML and an algorithm to learn visibly pushdown automata (VPA) directly from a set of examples. The proposed algorithm does not require the tree representation of XML, so it can process large documents or streams. The resulting deterministic VPA then allows stream validation of documents to recognize deviations in the underlying tree structure or datatypes.Comment: Paper accepted at First Int. Workshop on Emerging Cyberthreats and Countermeasures ECTCM 201

    The Hidden Web, XML and Semantic Web: A Scientific Data Management Perspective

    Get PDF
    The World Wide Web no longer consists just of HTML pages. Our work sheds light on a number of trends on the Internet that go beyond simple Web pages. The hidden Web provides a wealth of data in semi-structured form, accessible through Web forms and Web services. These services, as well as numerous other applications on the Web, commonly use XML, the eXtensible Markup Language. XML has become the lingua franca of the Internet that allows customized markups to be defined for specific domains. On top of XML, the Semantic Web grows as a common structured data source. In this work, we first explain each of these developments in detail. Using real-world examples from scientific domains of great interest today, we then demonstrate how these new developments can assist the managing, harvesting, and organization of data on the Web. On the way, we also illustrate the current research avenues in these domains. We believe that this effort would help bridge multiple database tracks, thereby attracting researchers with a view to extend database technology.Comment: EDBT - Tutorial (2011

    Semantic Modelling of e-Solutions Using a View Formalism with Conceptual and Logical Extensions

    Get PDF
    In industrial informatics, there exists a requirement to model and design views at a higher level of abstraction. Since the classical view definitions are only available at the query or instance level, modelling and maintaining such views for complex enterprise information systems (EIS) is a challenging task. Further, the introduction of semi-structured data (namely XML) and its rapid adaptation by the commercial and industrial systems increased the complexity for view design and specification. To address such and issue, in this paper we present; (a) a layered view model for XML, (b) a design methodology for such views and (c) some real-world industrial applications of the view model. The XML view formalism is defined at the conceptual level and the design methodology is based on the XML semantic (XSemantic) nets, a high-level object-oriented (OO) modelling language for XML domains

    Alternative representations for visual constrainst specification in the layered view model

    Get PDF
    Extensible Markup Language (XML), with its rich set of semantics and constraints, is becoming the dominant standard for storing, describing and interchanging data among various Enterprises Information Systems (EIS) and databases. With the increased reliance on such semi-structured data and schemas, there exists a requirement to model, design, and constrain semi-structured data and the associated semantics at a higher level of abstraction than at the instance or data level. But most semi-structured schema languages lack the ability to provide higher levels of abstraction, such as visual constraints, that are easily understood by humans. Conversely, though Object-Oriented (OO) conceptual models offers the power in describing and modelling real-world data semantics, constraints and their inter-relationships in a form that is precise and comprehensible to users, they provide insufficient modelling constructs for utilizing XML schema like data descriptions and constraints. Therefore, it is interesting to investigate conceptual and schema formalisms as a means of providing higher level semantics in the context of XML-related data engineering. In this paper, we present a visual constraint specification model for an XML layered view model. First we briefly outline the view model and then provide a detailed discussion on modelling issues related to view constraint specification using two OO modelling languages, namely OMG's UML/OCL and XML Semantics (XSemantic) nets. To demonstrate our concepts, we also provide an illustrative case study example based on a real-world application

    XML views, part III: An UML based design methodology for XML views

    Get PDF
    Object-Oriented (OO) conceptual models have the power in describing and modelling real-world data semantics and their inter-relationships in a form that is precise and comprehensible to users. Today UML has established itself as the language of choice for modelling complex enterprises information systems (EIS) using OO techniques. Conversely, the eXtensible Markup Language (XML) is fast emerging as the dominant standard for storing, describing and interchanging data among various enterprises systems and databases. With the introduction of XML Schema, which provides rich facilities for constraining and defining XML content, XML provides the ideal platform and the flexibility for capturing and representing complex enterprise data formats. Yet, UML provides insufficient modelling constructs for utilising XML schema based data description and constraints, while XML Schema lacks the ability to provide higher levels of abstraction (such as conceptual models) that are easily understood by humans. Therefore to enable efficient business application development of large-scale enterprise systems, we need UML like models with rich XML schema like semantics. To address such issue, in this paper, we proposed a generic, semantically rich view mechanism to conceptually model and design (using UML) XML domains to support data modelling of complex domains such as data warehousing and e-commerce systems. Our approach is based on UML and UML stereotypes to design and transform XML views

    A layered view model for XML with conceptual and logical extensions, and its applications

    Full text link
    University of Technology, Sydney. Faculty of Information Technology.EXtensible Markup Language (XML) is becoming the dominant standard for storing, describing and interchanging data among various Enterprises Information Systems (EIS), web repositories and databases. With this increasing reliance on such self-describing, schema-based, semi-structured data language XML, there exists a need to model, design, and manipulate XML and associated semantics at a higher level of abstraction than at the instance level. However, existing OO conceptual modelling languages provide insufficient modelling constructs for utilizing XML structures, descriptions and constraints, and XML and associated schema languages lack the ability to provide higher levels of abstraction, such as conceptual models that are easily understood by humans. To this end, it is interesting to investigate conceptual and schema formalisms as a means of providing higher level semantics in the context of XML-related data modelling. In particular we note that there is a strong need to model views of XML repositories at the conceptual level. This is in contrast to the situation for views for the relational model which are generally defined at the implementation level. In this research, we use XML view and introduce the Layered View Model (LVM, for short), a declarative conceptual framework for specifying and defining views at a higher level of abstraction. The views in the LVM are specified using explicit conceptual, logical and instance level semantics and provide declarative transformation between these levels of abstraction. For such a task, an elaborated and enhanced OO based modelling and transformation methodology is employed. The LVM framework leads to a number of interesting problems that are studied in this research. First we address the issue of conceptualizing the notion of views: the clear separation of conceptual concerns from the implementation and data language concerns. Here, the LVM views are considered as first-class citizens of the conceptual model. Second we provide formal semantics and definitions to enforce representation, specification and definition of such views at the highest level of abstraction, the conceptual level. Third we address the issue of modelling and transformation of LVM views to the required level of abstraction, namely to the schema and instance levels. Finally, we apply LVM to real-world data modelling scenarios to develop other architectural frameworks in the domains such as dimensional XML data modelling, ontology views in the Semantic Web paradigm and modelling user-centred websites and web portals

    Writing Structured and Semantics-Oriented Documents: {TeX} vs {XML}

    No full text
    International audienceUsing XML-like syntax for documents gives them a tree structure, inducing a notion of structured document. Defining domain-dependent tags introduces a notion of semantics-oriented writing. These two points result in a new view about document production. In fact, they have already existed within TeX, but in another shape. This article aims to point out these notions and the differences between them. It ends with some proposals about the evolution of the tools belonging to TeX's world

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction
    • …
    corecore