25 research outputs found

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Power minimization and optimum ONU placements in integrated wireless optical access networks

    Get PDF
    The deployment of optical fibre in place of copper cable in access networks has experienced remarkable growth over the past several years due to a wide range of benefits. A major benefit of optical fibre over copper cable is that it is more secure and immune to electromagnetic interferences. Optical fibre has also provided the capability of handling higher throughputs for longer distances, and experiences no crosstalk between other fibre optic cables. However, the last mile reach to end-users with optical fibre is very costly. This alternative replacement results in increased costs for manual labour and energy consumption in the access network. The current demand in all areas of telecommunications, and especially access networks, is greener networking. In order to offset the high costs of optical access implementations and to satisfy this demand, an investigation into integrated wireless optical access networks (IWOAN) is warranted. The proliferation of wireless devices has also motivated the interest in IWOAN as it combines the flexibility and efficiency of wireless with the security and stability provided by optical. With the emergence of smart phones and tablets, wireless access networks are now supporting an increasing amount of traffic volume with improved throughput and accessibility. We employ a Passive Optical Network (PON) infrastructure from the central office to the customer, traced from the Optical Line Terminal (OLT) to the customer premises devices known as Optical Network Units (ONUs) for IWOAN. At the ONU, the optical fibre is terminated and wireless communication is implemented. The ONU acts as a wireless access point/gateway for wireless Base Stations (BS) serving different coverage areas in point-to-point topology. With recent trends of advanced wireless technologies, premium rich applications such as multimedia streaming, interactive gaming and cloud computing are delivered in a satisfactory and economic way. This wireless-optical integration aims to reduce and solve the cost of replacing copper cables. However, another issue is raised with increased costs in energy consumption due to the integration of wireless and optical communication. Typically a large number of ONUs need to be deployed in order to serve many wireless BSs located in different coverage areas. As a result, any cost savings gained by the integration process is exhausted with the increased cost of power consumption

    5G wireless network support using umanned aerial vehicles for rural and low-Income areas

    Get PDF
    >Magister Scientiae - MScThe fifth-generation mobile network (5G) is a new global wireless standard that enables state-of-the-art mobile networks with enhanced cellular broadband services that support a diversity of devices. Even with the current worldwide advanced state of broadband connectivity, most rural and low-income settings lack minimum Internet connectivity because there are no economic incentives from telecommunication providers to deploy wireless communication systems in these areas. Using a team of Unmanned Aerial Vehicles (UAVs) to extend or solely supply the 5G coverage is a great opportunity for these zones to benefit from the advantages promised by this new communication technology. However, the deployment and applications of innovative technology in rural locations need extensive research

    Novel Models and Algorithms Paving the Road towards RF Convergence

    Get PDF
    After decades of rapid evolution in electronics and signal processing, the technologies in communications, positioning, and sensing have achieved considerable progress. Our daily lives are fundamentally changed and substantially defined by the advancement in these technologies. However, the trend is challenged by a well-established fact that the spectrum resources, like other natural resources, are gradually becoming scarce. This thesis carries out research in the field of RF convergence, which is regarded as a mean to intelligently exploit spectrum resources, e.g., by finding novel methods of optimising and sharing tasks between communication, positioning, and sensing. The work has been done to closely explore opportunities for supporting the RF convergence. As a supplement for the electromagnetic waves propagation near the ground, ground-to-air channel models are first proposed and analysed, by incorporating the atmospheric effects when the altitude of aerial users is higher than 300 m. The status quos of techniques in communications, positioning, and sensing are separately reviewed, and our newly developments in each field are briefly introduced. For instance, we study the MIMO techniques for interference mitigation on aerial users; we construct the reflected echoes, i.e., the radar receiving, for the joint sensing and communications system. The availability of GNSS signals is of vital importance to the GNSS-enabled services, particularly the life-critical applications. To enhance the resilience of GNSS receivers, the RF fingerprinting based anti-spoofing techniques are also proposed and discussed. Such a guarantee on GNSS and ubiquitous GNSS services drive the utilisation of location information, also needed for communications, hence the proposal of a location-based beamforming algorithm. The superposition coding scheme, as an attempt of the waveform design, is also brought up for the joint sensing and communications. The RF convergence will come with many facets: the joint sensing and communications promotes an efficient use of frequency spectrum; the positioning-aided communications encourage the cooperation between systems; the availability of robust global positioning systems benefits the applications relying on the GNSS service

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Journal of Telecommunications and Information Technology, 2006, nr 2

    Get PDF
    kwartalni
    corecore