149,646 research outputs found

    Rate Optimal design of a Wireless Backhaul Network using TV White Space

    Full text link
    The penetration of wireless broadband services in remote areas has primarily been limited due to the lack of economic incentives that service providers encounter in sparsely populated areas. Besides, wireless backhaul links like satellite and microwave are either expensive or require strict line of sight communication making them unattractive. TV white space channels with their desirable radio propagation characteristics can provide an excellent alternative for engineering backhaul networks in areas that lack abundant infrastructure. Specifically, TV white space channels can provide "free wireless backhaul pipes" to transport aggregated traffic from broadband sources to fiber access points. In this paper, we investigate the feasibility of multi-hop wireless backhaul in the available white space channels by using noncontiguous Orthogonal Frequency Division Multiple Access (NC-OFDMA) transmissions between fixed backhaul towers. Specifically, we consider joint power control, scheduling and routing strategies to maximize the minimum rate across broadband towers in the network. Depending on the population density and traffic demands of the location under consideration, we discuss the suitable choice of cell size for the backhaul network. Using the example of available TV white space channels in Wichita, Kansas (a small city located in central USA), we provide illustrative numerical examples for designing such wireless backhaul network

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    Smart Community Wireless Platforms: Costs, Benefits, Drawbacks, Risks

    Get PDF
    A wireless network covering most of the city is a key component of a smart city. Although the wireless network offers many benefits, a key issue is the costs associated with laying out the infrastructure and services, making the bandwidth available and maintaining the services. We believe community involvement is important in building city-wide wireless networks. Indeed, many community wireless networks have been successful. Could the city inspire and assist the communities with building their wireless networks, and then unite them for a city-wide wireless network? We address the first question by presenting a model where municipality, communities and smart utility providers work together to create a platform, smart community wireless platform, for a community where platform sides work together toward achieving smart community objectives. One challenge is to estimate the total cost, benefits and drawbacks of such platforms. Another challenge is to model risks and mitigation plans for their success. We examine relevant dynamics in measuring the total cost, benefits, drawbacks and risks of smart community wireless platforms and develop models for estimating their success under various scenarios. To develop models, we use an intelligence framework that incorporates systems dynamics modelling with statistical, economical and machine learning methods

    Review of state-of-the-art wireless technologies and applications in smart cities

    Get PDF
    There are increasing preferences to employ wireless communication technologies for high mobility, high scalability and low-cost applications in smart city development. This paper gives a brief synopsis of typical wireless technologies in smart city applications and the comparison analysis between them. The trend for smart city wireless technology is also presented. Examples, for several key applications within smart city development (healthcare, smart grid, localization) are studied and current advanced solutions supporting these applications are summarized with futuristic trends and demands are presented

    Government policy and wireless city networks: A comparative analysis of motivations, goals, services and their relation to network structure

    Get PDF
    Wireless City Networks are a recent, but growing phenomenon. In the United States hundreds of cities are looking into the possibility of rolling out Wi-Fi or WiMax based networks over substantial parts of the city. The underlying rationale is that wireless city networks are cheap and flexible alternatives for fixed broadband networks. Cities more and more see broadband Internet access as a necessary and therefore public utility to be provided to their communities at affordable prices or even free of charge. The deployment of wireless city networks is however more than just infrastructure provision. Initiatives are linked to broader city policies related to digital divide, city renewal, stimulation of innovation, stimulation of tourism, strengthening the economic fabric of the city, etc. In this article we will argue that explicit and implicit goals are directly linked to the coverage and topology of networks, the technology used, price and service modalities, etc. Furthermore we will argue that the differences in context between the US and Europe explain the different infrastructural trajectories taken. Overall and on the basis of empirical findings we caution for the overoptimistic view that Wi -Fi-based wireless city networks are an equal alternative for providing broadband access. There are both financial and technological uncertainties, which could have a serious impact on the performance of these initiatives

    Smart Bike Sharing System to make the City even Smarter

    Full text link
    These last years with the growing population in the smart city demands an efficient transportation sharing (bike sharing) system for developing the smart city. The Bike sharing as we know is affordable, easily accessible and reliable mode of transportation. But an efficient bike sharing capable of not only sharing bike also provides information regarding the availability of bike per station, route business, time/day-wise bike schedule. The embedded sensors are able to opportunistically communicate through wireless communication with stations when available, providing real-time data about tours/minutes, speed, effort, rhythm, etc. We have been based on our study analysis data to predict regarding the bike's available at stations, bike schedule, a location of the nearest hub where a bike is available etc., reduce the user time and effort

    Big Data Model Simulation on a Graph Database for Surveillance in Wireless Multimedia Sensor Networks

    Full text link
    Sensors are present in various forms all around the world such as mobile phones, surveillance cameras, smart televisions, intelligent refrigerators and blood pressure monitors. Usually, most of the sensors are a part of some other system with similar sensors that compose a network. One of such networks is composed of millions of sensors connect to the Internet which is called Internet of things (IoT). With the advances in wireless communication technologies, multimedia sensors and their networks are expected to be major components in IoT. Many studies have already been done on wireless multimedia sensor networks in diverse domains like fire detection, city surveillance, early warning systems, etc. All those applications position sensor nodes and collect their data for a long time period with real-time data flow, which is considered as big data. Big data may be structured or unstructured and needs to be stored for further processing and analyzing. Analyzing multimedia big data is a challenging task requiring a high-level modeling to efficiently extract valuable information/knowledge from data. In this study, we propose a big database model based on graph database model for handling data generated by wireless multimedia sensor networks. We introduce a simulator to generate synthetic data and store and query big data using graph model as a big database. For this purpose, we evaluate the well-known graph-based NoSQL databases, Neo4j and OrientDB, and a relational database, MySQL.We have run a number of query experiments on our implemented simulator to show that which database system(s) for surveillance in wireless multimedia sensor networks is efficient and scalable

    Smart Cities for Real People

    Get PDF
    Accelerating urbanization of the population and the emergence of new smart sensors (the Internet of Things) are combining in the phenomenon of the smart city. This movement is leading to improved quality of life and public safety, helping cities to enjoy economies that help remedy some budget overruns, better health care, and is resulting in increased productivity. The following report summarizes evolving digital technology trends, including smart phone applications, mapping software, big data and sensor miniaturization and broadband networking, that combine to create a technology toolkit available to smart city developers, managers and citizens. As noted above, the benefits of the smart city are already evident in some key areas as the technology sees actual implementation, 30 years after the creation of the broadband cable modem. The challenges of urbanization require urgent action and intelligent strategies. The applications and tools that truly benefit the people who live in cities will depend not on just the tools, but their intelligent application given current systemic obstacles, some of which are highlighted in the article. Of course, all the emerging technologies mentioned are dependent on ubiquitous, economical, reliable, safe and secure networks (wired and wireless) and network service providers
    corecore