98 research outputs found

    Graph Based Reduction of Program Verification Conditions

    Get PDF
    Increasing the automaticity of proofs in deductive verification of C programs is a challenging task. When applied to industrial C programs known heuristics to generate simpler verification conditions are not efficient enough. This is mainly due to their size and a high number of irrelevant hypotheses. This work presents a strategy to reduce program verification conditions by selecting their relevant hypotheses. The relevance of a hypothesis is determined by the combination of a syntactic analysis and two graph traversals. The first graph is labeled by constants and the second one by the predicates in the axioms. The approach is applied on a benchmark arising in industrial program verification

    Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014

    Get PDF
    International audienceWhy3 is an environment for static verification, generic in the sense that it is used as an intermediate tool by different front-ends for the verification of Java, C or Ada programs. Yet, the choices made when designing the specification languages provided by those front-ends differ significantly, in particular with respect to the executability of specifications. We review these differences and the issues that result from these choices. We emphasize the specific feature of ghost code which turns out to be extremely useful for both static and dynamic verification. We also present techniques, combining static and dynamic features, that help users understand why static verification fails

    On formal methods for certifying floating-point C programs

    Get PDF
    This paper presents an implementation of an extension of the ACSL specication language in the Frama-C tool in order to prove the correctness of floating-point C programs. A first model checks that there is no over flow, i.e., proof obligations are generated by the Why tool to prove that the result of a fl oating-point operation is not greater than the maximal fl oat allowed in the given type, this model is called the Strict model. A second model, called the Full model, extends the Strict model. The Full model allows over flows and deals with special values: signed infinities, NaNs (Not-a-Number) and signed zeros as in the IEEE-754 Standard. The verification conditions generated by Why are (partially) proved by automatic theorem provers: Alt-Ergo, Simplify, Yices, Z3, CVC3 and Gappa or discharged in the interactive proof assistant Coq [20] using two existing Coq formalization of fl oating-point arithmetic. When the Why proof obligations are written in the syntax of the Gappa library, we can use the gappa and interval tactics to achieve the proof. Several examples of fl oating-point C programs are presented in the paper to prove the efficiency of this implementation

    Using Graph Transformations and Graph Abstractions for Software Verification

    Get PDF
    In this paper we describe our intended approach for the verification of software written in imperative programming languages. We base our approach on model checking of graph transition systems, where each state is a graph and the transitions are specified by graph transformation rules. We believe that graph transformation is a very suitable technique to model the execution semantics of languages with dynamic memory allocation. Furthermore, such representation allows us to investigate the use of graph abstractions, which can mitigate the combinatorial explosion inherent to model checking. In addition to presenting our planned approach, we reason about its feasibility, and, by providing a brief comparison to other existing methods, we highlight the benefits and drawbacks that are expected

    A deductive verification platform for cryptographic software

    Get PDF
    In this paper we describe a deductive verification platform for the CAO language. CAO is a domain-specific language for cryptography. We show that this language presents interesting challenges for formal verification, not only in the rich mathematical type system that it introduces, but also in the cryptography-oriented language constructions that it offers. We describe how we tackle these problems, and also demonstrate that, by relying on the Jessie plug-in included in the Frama-C framework, the development time of such a complex verification tool could be greatly reduced. We base our presentation on real-world examples of CAO code, extracted from the open-source code of the NaCl cryptographic library, and illustrate how various cryptography-relevant security properties can be verified.(undefined

    A Deductive Verification Platform for Cryptographic Software

    Get PDF
    In this paper we describe a deductive verification platform for the CAO language. CAO is a domain-specific language for cryptography. We show that this language presents interesting challenges for formal verification, not only in the rich mathematical type system that it introduces, but also in the cryptography-oriented language constructions that it offers. We describe how we tackle these problems, and also demonstrate that, by relying on the Jessie plug-in included in the Frama-C framework, the development time of such a complex verification tool could be greatly reduced. We base our presentation on real-world examples of CAO code, extracted from the open-source code of the NaCl cryptographic library, and illustrate how various cryptography-relevant security properties can be verified

    Hardware-Independent Proofs of Numerical Programs

    Get PDF
    On recent architectures, a numerical program may give different answers depending on the execution hardware and the compilation. Our goal is to formally prove properties about numerical programs that are true for multiple architectures and compilers. We propose an approach that states the rounding error of each floating-point computation whatever the environment. This approach is implemented in the Frama-C platform for static analysis of C code. Small case studies using this approach are entirely and automatically prove

    Properties preservation during transformation

    Get PDF
    To prove the correctness of a program (written in a high level programming language) with respect to a specification (a set of proof obligations) does not assure the correctness of the machine code that the end-user will run after compilation and deployment phases. The code generated by the compiler should be verified again to guarantee that its correctness was preserved, and then that it can be executed in safety. In the context of a Ph.D. work in the area of software analysis and transformation, we are looking for a suitable approach to prove that the software properties (validated at source level) are kept during translation. In this position paper we introduce our architectural proposal, and discuss the platform and we are building for Java+JML on the top of Eclipse.Fundação para a Ciência e a Tecnologia (FCT) - MAPi/FCT, bolsa de doutoramento nº. SFRH/BD/33231/2007
    corecore