1,487 research outputs found

    Can the g Factor Play a Role in Artificial General Intelligence Research?

    Get PDF
    In recent years, a trend in AI research has started to pursue human-level, general artificial intelli-gence (AGI). Although the AGI framework is characterised by different viewpoints on what intelligence is and how to implement it in artificial systems, it conceptualises intelligence as flexible, general-purposed, and capable of self-adapting to different contexts and tasks. Two important ques-tions remain open: a) should AGI projects simu-late the biological, neural, and cognitive mecha-nisms realising the human intelligent behaviour? and b) what is the relationship, if any, between the concept of general intelligence adopted by AGI and that adopted by psychometricians, i.e., the g factor? In this paper, we address these ques-tions and invite researchers in AI to open a dis-cussion on the theoretical conceptions and practi-cal purposes of the AGI approach

    From proper motions to star cluster dynamics: measuring velocity dispersion in deconvolved distribution functions

    Get PDF
    We investigate the effect that the usually large errors associated with ground-based proper motion (PM) components have on the determination of a star cluster's velocity dispersion (\sv). Rather than histograms, we work with PM distribution functions (PMDFs), taking the 1σ1\sigma uncertainties formally into account. In this context, a cluster's intrinsic PMDF is broadened by the error distribution function (eDF) that, given the average error amplitude, has a width usually comparable to the cluster PMDF. Thus, we apply a Richardson-Lucy (RL) deconvolution to the PMDFs of a set of relatively nearby and populous open clusters (OCs), using the eDFs as point spread functions (PSFs). The OCs are NGC\,1039 (M\,34), NGC\,2477, NGC\,2516, NGC\,2682 (M\,67), and NGC\,7762. The deconvolved PMDFs are approximately Gaussian in shape, with dispersions lower than the observed ones by a factor of 4-10. NGC\,1039 and NGC\,2516, the nearest OCs of the sample, have deconvolved \sv\ compatible with those of bound OCs of mass 103\sim10^3\,\ms. NGC\,2477 and NGC\,2682 have deconvolved PMDFs with a secondary bump, shifted towards higher average velocities, which may be an artefact of the RL deconvolution when applied to asymmetric profiles. Alternatively, it may originate from cluster merger, large-scale mass segregation or, least probably, binaries.Comment: Accepted by MNRA

    A sample of relatively unstudied star clusters in the Large Magellanic Cloud: fundamental parameters determined from Washington photometry

    Get PDF
    To enlarge our growing sample of well-studied star clusters in the Large Magellanic Cloud (LMC), we present CCD Washington CT1 photometry to T1 ~ 23 in the fields of twenty-three mostly unstudied clusters located in the inner disc and outer regions of the LMC. We estimated cluster radii from star counts. Using the cluster Washington (T1,C-T1) colour-magnitude diagrams, statistically cleaned from field star contamination, we derived cluster ages and metallicities from a comparison with theoretical isochrones of the Padova group. Whenever possible, we also derived ages using delta_T1 - the magnitude difference between the red giant clump and the main sequence turn off - and estimated metallicities from the standard giant branch procedure. We enlarged our sample by adding clusters with published ages and metallicities determined on a similar scale by applying the same methods. We examined relationships between their positions in the LMC, ages and metallicities. We find that the two methods for age and metallicity determination agree well with each other. Fourteen clusters are found to be intermediate-age clusters (1-2 Gyr), with [Fe/H] values ranging from -0.4 to -0.7. The remaining nine clusters turn out to be younger than 1 Gyr, with metallicities between 0.0 and -0.4. Our 23 clusters represent an increase of ~ 30% in the current total amount number of well-studied LMC clusters using Washington photometry. In agreement with previous studies, we find no evidence for a metallicity gradient. We also find that the younger clusters were formed closer to the LMC centre than the older ones.Comment: 11 pages, 10 figures. A&A, in pres

    A New Giant Branch Clump Structure In the Large Magellanic Cloud

    Get PDF
    We present Washington C, T1 CCD photometry of 21 fields located in the northern part of the Large Magellanic Cloud (LMC), and spread over a region of more than 2.52 degrees approximately 6 degrees from the bar. The surveyed areas were chosen on the basis of their proximity to SL 388 and SL 509, whose fields showed the presence of a secondary giant clump, observationally detected by Bica et al. (1998, AJ, 116, 723). From the collected data we found that most of the observed field CMDs do not show a separate secondary clump, but rather a continuous vertical structure (VS), which is clearly seen for the first time. Its position and size are nearly the same throughout the surveyed regions: it lies below the Red Giant Clump (RGC) and extends from the bottom of the RGC to approximately 0.45 mag fainter, spanning the bluest color range of the RGC. The more numerous the VS stars in a field, the larger the number of LMC giants in the same zone. Our analysis demonstrate that VS stars belong to the LMC and are most likely the consequence of some kind of evolutionary process in the LMC, particularly in those LMC regions with a noticeable large giant population. Our results suggest that in order to trigger the formation of VS stars, there should be other conditions besides the appropriate age, metallicity, and the necessary red giant star density. Indeed, stars satisfying the requisites mentioned above are commonly found throughout the LMC, but the VS phenomenon is only clearly seen in some isolated regions. Finally, the fact that clump stars have an intrinsic luminosity dispersion further constrains the use of the clump magnitude as a reliable distance indicator.Comment: 25 pages, 9 figures, 3 tables; to be published in AJ, Dec. issu

    Near-IR line-strengths in elliptical galaxies: evidence for IMF variations?

    Get PDF
    We present new relations between recently defined line-strength indices in the near-IR (CaT*, CaT, PaT, MgI, and sTiO) and central velocity dispersion (sigma_0) for a sample of 35 early-type galaxies, showing evidence for significant anti-correlations between CaII triplet indices (CaT* and CaT) and log(sigma_0). These relations are interpreted in the light of our recent evolutionary synthesis model predictions, suggesting the existence of important Ca underabundances with respect to Fe and/or an increase of the dwarf to giant stars ratio along the mass sequence of elliptical galaxies.Comment: 5 pages, 3 figures, LaTeX. Accepted for publication in MNRAS Pink Pages. See related information in http://www.ucm.es/info/Astrof/ellipt/CATRIPLET.htm

    Evidence for two populations of Galactic globular clusters from the ratio of their half-mass to Jacobi radii

    Full text link
    We investigate the ratio between the half-mass radii r_h of Galactic globular clusters and their Jacobi radii r_J given by the potential of the Milky Way and show that clusters with galactocentric distances R_{GC}>8 kpc fall into two distinct groups: one group of compact, tidally-underfilling clusters with r_h/r_J<0.05 and another group of tidally filling clusters which have 0.1 < r_h/r_J<0.3. We find no correlation between the membership of a particular cluster to one of these groups and its membership in the old or younger halo population. Based on the relaxation times and orbits of the clusters, we argue that compact clusters and most clusters in the inner Milky Way were born compact with half-mass radii r_h < 1 pc. Some of the tidally-filling clusters might have formed compact as well, but the majority likely formed with large half-mass radii. Galactic globular clusters therefore show a similar dichotomy as was recently found for globular clusters in dwarf galaxies and for young star clusters in the Milky Way. It seems likely that some of the tidally-filling clusters are evolving along the main sequence line of clusters recently discovered by Kuepper et al. (2008) and are in the process of dissolution.Comment: 8 pages, 4 figures, MNRAS in pres

    A Complete N-body Model of the Old Open Cluster M67

    Full text link
    The old open cluster M67 is an ideal testbed for current cluster evolution models because of its dynamically evolved structure and rich stellar populations that show clear signs of interaction between stellar, binary and cluster evolution. Here we present the first truly direct N-body model for M67, evolved from zero age to 4 Gyr taking full account of cluster dynamics as well as stellar and binary evolution. Our preferred model starts with 12000 single stars and 12000 binaries placed in a Galactic tidal field at 8.0 kpc from the Galactic Centre. Our choices for the initial conditions and for the primordial binary population are explained in detail. At 4 Gyr, the age of M67, the total mass has reduced by 90% as a result of mass loss and stellar escapes. The mass and half-mass radius of luminous stars in the cluster are a good match to observations although the model is more centrally concentrated than observations indicate. The stellar mass and luminosity functions are significantly flattened by preferential escape of low-mass stars. We find that M67 is dynamically old enough that information about the initial mass function is lost, both from the current luminosity function and from the current mass fraction in white dwarfs. The model contains 20 blue stragglers at 4 Gyr which is slightly less than the 28 observed in M67. Nine are in binaries. The blue stragglers were formed by a variety of means and we find formation paths for the whole variety observed in M67. Both the primordial binary population and the dynamical cluster environment play an essential role in shaping the population. A substantial population of short-period primordial binaries (with periods less than a few days) is needed to explain the observed number of blue stragglers in M67.Comment: 32 pages, 17 figures, submitted to MNRA
    corecore