159 research outputs found

    Pulse Shaping, Localization and the Approximate Eigenstructure of LTV Channels

    Full text link
    In this article we show the relation between the theory of pulse shaping for WSSUS channels and the notion of approximate eigenstructure for time-varying channels. We consider pulse shaping for a general signaling scheme, called Weyl-Heisenberg signaling, which includes OFDM with cyclic prefix and OFDM/OQAM. The pulse design problem in the view of optimal WSSUS--averaged SINR is an interplay between localization and "orthogonality". The localization problem itself can be expressed in terms of eigenvalues of localization operators and is intimately connected to the concept of approximate eigenstructure of LTV channel operators. In fact, on the L_2-level both are equivalent as we will show. The concept of "orthogonality" in turn can be related to notion of tight frames. The right balance between these two sides is still an open problem. However, several statements on achievable values of certain localization measures and fundamental limits on SINR can already be made as will be shown in the paper.Comment: 6 pages, 2 figures, invited pape

    A Group-Theoretic Approach to the WSSUS Pulse Design Problem

    Full text link
    We consider the pulse design problem in multicarrier transmission where the pulse shapes are adapted to the second order statistics of the WSSUS channel. Even though the problem has been addressed by many authors analytical insights are rather limited. First we show that the problem is equivalent to the pure state channel fidelity in quantum information theory. Next we present a new approach where the original optimization functional is related to an eigenvalue problem for a pseudo differential operator by utilizing unitary representations of the Weyl--Heisenberg group.A local approximation of the operator for underspread channels is derived which implicitly covers the concepts of pulse scaling and optimal phase space displacement. The problem is reformulated as a differential equation and the optimal pulses occur as eigenstates of the harmonic oscillator Hamiltonian. Furthermore this operator--algebraic approach is extended to provide exact solutions for different classes of scattering environments.Comment: 5 pages, final version for 2005 IEEE International Symposium on Information Theory; added references for section 2; corrected some typos; added more detailed discussion on the relations to quantum information theory; added some more references; added additional calculations as an appendix; corrected typo in III.

    On Max-SINR Receiver for Hexagonal Multicarrier Transmission Over Doubly Dispersive Channel

    Full text link
    In this paper, a novel receiver for Hexagonal Multicarrier Transmission (HMT) system based on the maximizing Signal-to-Interference-plus-Noise Ratio (Max-SINR) criterion is proposed. Theoretical analysis shows that the prototype pulse of the proposed Max-SINR receiver should adapt to the root mean square (RMS) delay spread of the doubly dispersive (DD) channel with exponential power delay profile and U-shape Doppler spectrum. Simulation results show that the proposed Max-SINR receiver outperforms traditional projection scheme and obtains an approximation to the theoretical upper bound SINR performance within the full range of channel spread factor. Meanwhile, the SINR performance of the proposed prototype pulse is robust to the estimation error between the estimated value and the real value of time delay spread.Comment: 6 pages. The paper has been published in Proc. IEEE GLOBECOM 2012. Copyright transferred to IEEE. arXiv admin note: text overlap with arXiv:1212.579

    Max-SINR Receiver for HMCT Systems over Non-Stationary Doubly Dispersive Channel

    Full text link
    In this paper, a maximizing Signal-to-Interference plus-Noise Ratio (Max-SINR) receiver for Hexagonal Multicarrier Transmission (HMCT) system over non-stationary doubly dispersive (NSDD) channel is proposed. The closed-form timing offset expression of the prototype pulse for the proposed Max-SINR HMCT receiver over NSDD channel is derived. Simulation results show that the proposed Max-SINR receiver outperforms traditional projection scheme and obtains an approximation to the theoretical upper bound SINR performance within all the local stationarity regions (LSRs). Meanwhile, the SINR performance of the proposed Max-SINR HMCT receiver is robust to the estimation error between the estimated value and the real value of root mean square (RMS) delay spread.Comment: This paper has been accepted by URSI GASS 2014 and will be presented in the proceeding of URSI GASS 201

    Weighted Norms of Ambiguity Functions and Wigner Distributions

    Full text link
    In this article new bounds on weighted p-norms of ambiguity functions and Wigner functions are derived. Such norms occur frequently in several areas of physics and engineering. In pulse optimization for Weyl--Heisenberg signaling in wide-sense stationary uncorrelated scattering channels for example it is a key step to find the optimal waveforms for a given scattering statistics which is a problem also well known in radar and sonar waveform optimizations. The same situation arises in quantum information processing and optical communication when optimizing pure quantum states for communicating in bosonic quantum channels, i.e. find optimal channel input states maximizing the pure state channel fidelity. Due to the non-convex nature of this problem the optimum and the maximizers itself are in general difficult find, numerically and analytically. Therefore upper bounds on the achievable performance are important which will be provided by this contribution. Based on a result due to E. Lieb, the main theorem states a new upper bound which is independent of the waveforms and becomes tight only for Gaussian weights and waveforms. A discussion of this particular important case, which tighten recent results on Gaussian quantum fidelity and coherent states, will be given. Another bound is presented for the case where scattering is determined only by some arbitrary region in phase space.Comment: 5 twocolumn pages,2 figures, accepted for 2006 IEEE International Symposium on Information Theory, typos corrected, some additional cites, legend in Fig.2 correcte
    • …
    corecore