789 research outputs found

    European Initiative Towards Advances in Fourth Generation

    Get PDF

    Wireless communications in the new millennium and third generation wireless networks

    Get PDF
    At the end of the 20 century, and at the beginning of this one, wireless communications are making large advances. The new technologies are on the way to provide a high-speed, high-quality information exchange between handheld terminals, and information repositories. The so called 2,5 generation networks, using the techniques like the HSCSD1, GPRS2, EDGE3, and the 3r generation wireless systems will help the wireless world to reach those goals. In this thesis I will start from the first and second-generation wireless networks, and then look into the 2,5 generation and 3rd generation wireless communications more in detail. The latest advances in the wireless world are the main focus of this paper although a short history of wireless communications is also given. The various aspects related to 3rd generation systems will be explored in this thesis, for example the air interface discussions, its time scale, its elements like the mobile equipment, software and security, USLM4, services that will be offered, etc. In addition, the technical factors and key technologies that are likely to shape the wireless network environment of the future will be explored. This part is expected to help us to see beyond the 3rd generation

    An intelligent radio access network selection and optimisation system in heterogeneous communication environments

    Get PDF
    PhDThe overlapping of the different wireless network technologies creates heterogeneous communication environments. Future mobile communication system considers the technological and operational services of heterogeneous communication environments. Based on its packet switched core, the access to future mobile communication system will not be restricted to the mobile cellular networks but may be via other wireless or even wired technologies. Such universal access can enable service convergence, joint resource management, and adaptive quality of service. However, in order to realise the universal access, there are still many pending challenges to solve. One of them is the selection of the most appropriate radio access network. Previous work on the network selection has concentrated on serving the requesting user, but the existing users and the consumption of the network resources were not the main focus. Such network selection decision might only be able to benefit a limited number of users while the satisfaction levels of some users are compromised, and the network resources might be consumed in an ineffective way. Solutions are needed to handle the radio access network selection in a manner that both of the satisfaction levels of all users and the network resource consumption are considered. This thesis proposes an intelligent radio access network selection and optimisation system. The work in this thesis includes the proposal of an architecture for the radio access network selection and optimisation system and the creation of novel adaptive algorithms that are employed by the network selection system. The proposed algorithms solve the limitations of previous work and adaptively optimise network resource consumption and implement different policies to cope with different scenarios, network conditions, and aims of operators. Furthermore, this thesis also presents novel network resource availability evaluation models. The proposed models study the physical principles of the considered radio access network and avoid employing assumptions which are too stringent abstractions of real network scenarios. They enable the implementation of call level simulations for the comparison and evaluation of the performance of the network selection and optimisation algorithms

    Device-to-Device Communication and Multihop Transmission for Future Cellular Networks

    Get PDF
    The next generation wireless networks i.e. 5G aim to provide multi-Gbps data traffic, in order to satisfy the increasing demand for high-definition video, among other high data rate services, as well as the exponential growth in mobile subscribers. To achieve this dramatic increase in data rates, current research is focused on improving the capacity of current 4G network standards, based on Long Term Evolution (LTE), before radical changes are exploited which could include acquiring additional/new spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell edge users vulnerable to inter-cell interference. In addition, wireless transmission is commonly hindered by fading and pathloss. In this direction, this thesis focuses on improving the performance of cell edge users in LTE and LTE-Advanced (LTE-A) networks by initially implementing a new Coordinated Multi-Point (CoMP) algorithm to mitigate cell edge user interference. Subsequently Device-to-Device (D2D) communication is investigated as the enabling technology for maximising Resource Block (RB) utilisation in current 4G and emerging 5G networks. It is demonstrated that the application, as an extension to the above, of novel power control algorithms, to reduce the required D2D TX power, and multihop transmission for relaying D2D traffic, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond-the-state-of-the-art LTE system-level simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards. Additionally, a novel interference modelling scheme using the ‘wrap around’ technique was proposed and implemented that maintained the topology of flat surfaced maps, allowing for use with cell planning tools while obtaining accurate and timely results in the SLS compared to the few existing platforms. For the proposed CoMP algorithm, the adaptive beamforming technique was employed to reduce interference on the cell edge UEs by applying Coordinated Scheduling (CoSH) between cooperating cells. Simulation results show up to 2-fold improvement in terms of throughput, and also shows SINR gain for the cell edge UEs in the cooperating cells. Furthermore, D2D communication underlaying the LTE network (and future generation of wireless networks) was investigated. The technology exploits the proximity of users in a network to achieve higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the Evolved Node B (eNB) i.e. by direct communication between User Equipment (UE). Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for a D2D receiver, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNB in the network. The impact of interference from the simultaneous transmission however impedes the achievable data rates of cellular UEs in the network, especially at the cell edge. Thus, a power control algorithm was proposed to mitigate the impact of interference in the hybrid network (network consisting of both cellular and D2D UEs). It was implemented by setting a minimum SINR threshold so that the cellular UEs achieve a minimum performance, and equally a maximum SINR threshold to establish fairness for the D2D transmission as well. Simulation results show an increase in the cell edge throughput and notable improvement in the overall SINR distribution of UEs in the hybrid network. Additionally, multihop transmission for D2D UEs was investigated in the hybrid network: traditionally, the scheme is implemented to relay cellular traffic in a homogenous network. Contrary to most current studies where D2D UEs are employed to relay cellular traffic, the use of idle nodes to relay D2D traffic was implemented uniquely in this thesis. Simulation results show improvement in D2D receiver throughput with multihop transmission, which was significantly better than that of the same UEs performance with equivalent distance between the D2D pair when using single hop transmission

    Evaluation of 3GPP Technology Candidate Towards Fourth Generation Mobile

    Full text link
    [ES] LTE-Advanced es una de las tecnologías candidatas para convertirse en la próxima generación de comunicaciones móviles (4G). Es responsabilidad de la Unión Internacional de las Telecomunicaciones (UIT) evaluar esta tecnología a través de los Grupos de Evaluación Externos (GEE), entre los cuales se encuentra el consorcio WINNER+ (Wireless World Initiative New Radio +). El Grupo de Comunicaciones Móviles (GCM) del Instituto de Telecomunicaciones y Aplicaciones Multimedia, como socio de WINNER+, estå analizando diferentes técnicas para optimizar la red de acceso radio LTEAdvanced. Esta tesina de måster se enmarca dentro de este trabajo, y especialmente, en la comparación de los turbo-códigos (TC) y Low Density Partity Check (LDPC) para anchos de banda de hasta 100 MHz. Los resultados obtenidos muestran que tanto los TC como los LDPC son buenos codificadores para esos tamaños de bloque. Los códigos LDPC representan una mejora de 0.5 dB como måximo respecto a los TC. Ademås, se ha realizado un estudio de prestaciones de la capa física de LTE en el enlace ascendente y descendente, junto con una propuesta de calibración de este tipo de simulaciones de enlace.[EN] LTE-Advanced is one promising candidate technology to become part of the next generation mobile (4G). It is up to the International Telecommunication Union (ITU) standardization body to assess this technology through the External Evaluation Groups (EEG), being one of them the WINNER+ project (Wireless World Initiative New Radio +). The Mobile Communications Group (MCG) of the Institute of Telecommunications and Multimedia Applications, as a partner of WINNER+, is currently analyzing and proposing different techniques with the aim of optimizing the LTE-Advanced radio access network. This Master Thesis is part of this activity and, especially, on the comparison of Turbo (TC) and Low Density Parity Check (LDPC) codes for bandwidths up to 100 MHz. Results prove that both TC and LDPC codes are good encoders for those block sizes. The LDPC codes only entail a maximum 0.5 dB improvement as compared with TC. In addition to this assessment, a performance study of LTE downlink/uplink (DL/ UL) physical layer together with a calibration proposal for link level simulations has been carried out.Cabrejas Peñuelas, J. (2009). Evaluation of 3GPP Technology Candidate Towards Fourth Generation Mobile. http://hdl.handle.net/10251/27347.Archivo delegad

    Channel Simulators for MmWave and 5G Applications

    Get PDF
    Along with the tremendous growth of extremely high traffic demand, 5G radio access technology, is becoming the core component to support massive and multifarious connected devices and real-time, and to offer high reliability wireless communications with high data rate. And millimeter-wave (mmWave) range with a huge frequency spectrum from 3 GHz to 300GHz will perfectly meet the multi-gigabit communicative demand. However, mmWave usage also generally brings new challenges, such as coping with high attenuation or path losses. As an effective method to evaluate the performance of the new concept in communication networks, nowadays, several channel models and simulators have been proposed and developped, such as, WINNER, COST-2100, IMT-Advanced, METIS, NYU Wire-less and QuaDRiGa etc. The thesis goals have been to offer an overview of the advantages and disadvantages of various mmWave channel models existing in the literature, based on the published literature, and to compare based on simulations some of the main features of two selected open-source models, namely the WINNER 2 and QuaDRiGa channel models. In the future, more mmWave channel models are planned to be tested and simulated for a better understanding of their suitability for various mmWave applications

    An architecture for converging reconfigurable radio systems

    Get PDF
    Since mobile telecommunication systems were rst introduced in the early 1980s they have become a pervasive part of modern life, with an estimated 85% of the global population believed to be in possession of a mobile communications device. To address the ever-increasing demand for fast ubiquitous provision of multimedia and data services, new Radio Access Technologies (RATs) capable of meeting those demands are constantly being developed and standardised. Currently the fourth generation of RATs is being deployed by network operators around the world, with standards bodies already working to develop and standardise even more advanced RATs. The introduction of any new, and often upgraded, RATs almost always requires network operators to purchase new hardware systems capable of supporting the new RATs, which must then be integrated with the plethora of RATs already present in the network operator's heterogeneous Radio Access Network (RAN). This process is costly and poses risks for network operators, as they must rst invest signi cant amounts of capital on new network hardware and then they have to convince their subscribers to purchase new mobile devices which are capable of supporting the new RAT. Recon gurable Radio Systems (RRSs) are a relatively new approach to developing, implementing and managing RATs within a RAN. A RRS di ers from a traditional radio system, in that each RAT is de ned in software which can be reused across multiple generic hardware platforms. Many RRSs also provide the functionality to manage and control the dynamic implementation of di erent RATs in network elements throughout a RAN. Although RRSs are the subject of numerous research e orts, there is currently no unifying approach or set of requirements for an RRS architecture or framework. In- stead various researchers focus their e orts on speci c topics relating to RRS, such as the recon gurable management system, or how RATs are modelled and implemented in software. This lack of formal standardisation or approach to developing RRSs represents a hindrance to the widespread adoption of RRSs

    Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in WiMAX Systems

    Get PDF
    • 

    corecore