20,847 research outputs found

    A Random Walk Perspective on Hide-and-Seek Games

    Get PDF
    We investigate hide-and-seek games on complex networks using a random walk framework. Specifically, we investigate the efficiency of various degree-biased random walk search strategies to locate items that are randomly hidden on a subset of vertices of a random graph. Vertices at which items are hidden in the network are chosen at random as well, though with probabilities that may depend on degree. We pitch various hide and seek strategies against each other, and determine the efficiency of search strategies by computing the average number of hidden items that a searcher will uncover in a random walk of nn steps. Our analysis is based on the cavity method for finite single instances of the problem, and generalises previous work of De Bacco et al. [1] so as to cover degree-biased random walks. We also extend the analysis to deal with the thermodynamic limit of infinite system size. We study a broad spectrum of functional forms for the degree bias of both the hiding and the search strategy and investigate the efficiency of families of search strategies for cases where their functional form is either matched or unmatched to that of the hiding strategy. Our results are in excellent agreement with those of numerical simulations. We propose two simple approximations for predicting efficient search strategies. One is based on an equilibrium analysis of the random walk search strategy. While not exact, it produces correct orders of magnitude for parameters characterising optimal search strategies. The second exploits the existence of an effective drift in random walks on networks, and is expected to be efficient in systems with low concentration of small degree nodes.Comment: 31 pages, 10 (multi-part) figure

    Sampling Geometric Inhomogeneous Random Graphs in Linear Time

    Get PDF
    Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based models, such as hyperbolic random graphs. With this paper we contribute to the theoretical analysis of these modern, more realistic random graph models. Instead of studying directly hyperbolic random graphs, we use a generalization that we call geometric inhomogeneous random graphs (GIRGs). Since we ignore constant factors in the edge probabilities, GIRGs are technically simpler (specifically, we avoid hyperbolic cosines), while preserving the qualitative behaviour of hyperbolic random graphs, and we suggest to replace hyperbolic random graphs by this new model in future theoretical studies. We prove the following fundamental structural and algorithmic results on GIRGs. (1) As our main contribution we provide a sampling algorithm that generates a random graph from our model in expected linear time, improving the best-known sampling algorithm for hyperbolic random graphs by a substantial factor O(n^0.5). (2) We establish that GIRGs have clustering coefficients in {\Omega}(1), (3) we prove that GIRGs have small separators, i.e., it suffices to delete a sublinear number of edges to break the giant component into two large pieces, and (4) we show how to compress GIRGs using an expected linear number of bits.Comment: 25 page

    Riemannian-geometric entropy for measuring network complexity

    Full text link
    A central issue of the science of complex systems is the quantitative characterization of complexity. In the present work we address this issue by resorting to information geometry. Actually we propose a constructive way to associate to a - in principle any - network a differentiable object (a Riemannian manifold) whose volume is used to define an entropy. The effectiveness of the latter to measure networks complexity is successfully proved through its capability of detecting a classical phase transition occurring in both random graphs and scale--free networks, as well as of characterizing small Exponential random graphs, Configuration Models and real networks.Comment: 15 pages, 3 figure

    Distances in random graphs with infinite mean degrees

    Full text link
    We study random graphs with an i.i.d. degree sequence of which the tail of the distribution function FF is regularly varying with exponent τ∈(1,2)\tau\in (1,2). Thus, the degrees have infinite mean. Such random graphs can serve as models for complex networks where degree power laws are observed. The minimal number of edges between two arbitrary nodes, also called the graph distance or the hopcount, in a graph with NN nodes is investigated when N→∞N\to \infty. The paper is part of a sequel of three papers. The other two papers study the case where τ∈(2,3)\tau \in (2,3), and τ∈(3,∞),\tau \in (3,\infty), respectively. The main result of this paper is that the graph distance converges for τ∈(1,2)\tau\in (1,2) to a limit random variable with probability mass exclusively on the points 2 and 3. We also consider the case where we condition the degrees to be at most NαN^{\alpha} for some α>0.\alpha>0. For τ−1<α<(τ−1)−1\tau^{-1}<\alpha<(\tau-1)^{-1}, the hopcount converges to 3 in probability, while for α>(τ−1)−1\alpha>(\tau-1)^{-1}, the hopcount converges to the same limit as for the unconditioned degrees. Our results give convincing asymptotics for the hopcount when the mean degree is infinite, using extreme value theory.Comment: 20 pages, 2 figure

    A statistical network analysis of the HIV/AIDS epidemics in Cuba

    Get PDF
    The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globally low but heterogeneous density, with clusters of high intraconnectivity but low interconnectivity. Though descriptive, our results pave the way for incorporating structure when studying stochastic SIR epidemics spreading on social networks

    A geometric entropy detecting the Erd\"os-R\'enyi phase transition

    Full text link
    We propose a method to associate a differentiable Riemannian manifold to a generic many degrees of freedom discrete system which is not described by a Hamiltonian function. Then, in analogy with classical Statistical Mechanics, we introduce an entropy as the logarithm of the volume of the manifold. The geometric entropy so defined is able to detect a paradigmatic phase transition occurring in random graphs theory: the appearance of the `giant component' according to the Erd\"os-R\'enyi theorem.Comment: 11 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1410.545
    • …
    corecore