27 research outputs found

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    Contributions to adaptive equalization and timing recovery for optical storage systems

    Get PDF
    no abstrac

    Structurally Robust Weak Continuity

    Get PDF
    Building on earlier work, we pose the following optimization: Given a sequence of finite extent, find a finite-alphabet sequence of finite extent, which satisfies a hard structural (syntactic) constraint (e.g., it is piecewise constant of plateau run-length > M, or locally monotonic of a given lomo-degree), and which minimizes the sum of a per-letter fidelity measure, and a first-order smoothness-complexity measure. This optimization represents the unification and outgrowth of several digital nonlinear filtering schemes, including the digital counterpart of the so-called Weak Continuity (WC) formulation of Mumford-Shah and Blake-Zisserman, the Minimum Description Length (MDL) approach of Leclerc, and previous work by the first author in so- called VORCA filtering and Digital Locally Monotonic Regression. It is shown that the proposed optimization admits efficient Viterbi-type solution, and overcomes a shortcoming of WC, while preserving its unique strengths. Similarly, it overcomes a drawback of VORCA and Digital Locally Monotonic Regression, while maintaining robustness to outliers.<P

    Achievable Rate and Modulation for Bandlimited Channels with Oversampling and 1-Bit Quantization at the Receiver

    Get PDF
    Sustainably realizing applications of the future with high performance demands requires that energy efficiency becomes a central design criterion for the entire system. For example, the power consumption of the analog-to-digital converter (ADC) can become a major factor when transmitting at large bandwidths and carrier frequencies, e.g., for ultra-short range high data rate communication. The consumed energy per conversion step increases with the sampling rate such that high resolution ADCs become unfeasible in the sub-THz regime at the very high sampling rates required. This makes signaling schemes adapted to 1-bit quantizers a promising alternative. We therefore quantify the performance of bandlimited 1-bit quantized wireless communication channels using techniques like oversampling and faster-than-Nyquist (FTN) signaling to compensate for the loss of achievable rate. As a limiting case, we provide bounds on the mutual information rate of the hard bandlimited 1-bit quantized continuous-time – i.e., infinitely oversampled – additive white Gaussian noise channel in the mid-to-high signal-to-noise ratio (SNR) regime. We derive analytic expressions using runlength encoded input signals. For real signals the maximum value of the lower bound on the spectral efficiency in the high-SNR limit was found to be approximately 1.63 bit/s/Hz. Since in practical scenarios the oversampling ratio remains finite, we derive bounds on the achievable rate of the bandlimited oversampled discrete-time channel. These bounds match the results of the continuous-time channel remarkably well. We observe spectral efficiencies up to 1.53 bit/s/Hz in the high-SNR limit given hard bandlimitation. When excess bandwidth is tolerable, spectral efficiencies above 2 bit/s/Hz per domain are achievable w.r.t. the 95 %-power containment bandwidth. Applying the obtained bounds to a bandlimited oversampled 1-bit quantized multiple-input multiple-output channel, we show the benefits when using appropriate power allocation schemes. As a constant envelope modulation scheme, continuous phase modulation is considered in order to relieve linearity requirements on the power amplifier. Noise-free performance limits are investigated for phase shift keying (PSK) and continuous phase frequency shift keying (CPFSK) using higher-order modulation alphabets and intermediate frequencies. Adapted waveforms are designed that can be described as FTN-CPFSK. With the same spectral efficiency in the high-SNR limit as PSK and CPFSK, these waveforms provide a significantly improved bit error rate (BER) performance. The gain in SNR required for achieving a certain BER can be up to 20 dB.Die nachhaltige Realisierung von zukünftigen Übertragungssystemen mit hohen Leistungsanforderungen erfordert, dass die Energieeffizienz zu einem zentralen Designkriterium für das gesamte System wird. Zum Beispiel kann die Leistungsaufnahme des Analog-Digital-Wandlers (ADC) zu einem wichtigen Faktor bei der Übertragung mit großen Bandbreiten und Trägerfrequenzen werden, z. B. für die Kommunikation mit hohen Datenraten über sehr kurze Entfernungen. Die verbrauchte Energie des ADCs steigt mit der Abtastrate, so dass hochauflösende ADCs im Sub-THz-Bereich bei den erforderlichen sehr hohen Abtastraten schwer einsetzbar sind. Dies macht Signalisierungsschemata, die an 1-Bit-Quantisierer angepasst sind, zu einer vielversprechenden Alternative. Wir quantifizieren daher die Leistungsfähigkeit von bandbegrenzten 1-Bit-quantisierten drahtlosen Kommunikationssystemen, wobei Techniken wie Oversampling und Faster-than-Nyquist (FTN) Signalisierung eingesetzt werden, um den durch Quantisierung verursachten Verlust der erreichbaren Rate auszugleichen. Wir geben Grenzen für die Transinformationsrate des Extremfalls eines strikt bandbegrenzten 1-Bit quantisierten zeitkontinuierlichen – d.h. unendlich überabgetasteten – Kanals mit additivem weißen Gauß’schen Rauschen bei mittlerem bis hohem Signal-Rausch-Verhältnis (SNR) an. Wir leiten analytische Ausdrücke basierend auf lauflängencodierten Eingangssignalen ab. Für reelle Signale ist der maximale Wert der unteren Grenze der spektralen Effizienz im Hoch-SNR-Bereich etwa 1,63 Bit/s/Hz. Da die Überabtastrate in praktischen Szenarien endlich bleibt, geben wir Grenzen für die erreichbare Rate eines bandbegrenzten, überabgetasteten zeitdiskreten Kanals an. Diese Grenzen stimmen mit den Ergebnissen des zeitkontinuierlichen Kanals bemerkenswert gut überein. Im Hoch-SNR-Bereich sind spektrale Effizienzen bis zu 1,53 Bit/s/Hz bei strikter Bandbegrenzung möglich. Wenn Energieanteile außerhalb des Frequenzbandes tolerierbar sind, können spektrale Effizienzen über 2 Bit/s/Hz pro Domäne – bezogen auf die Bandbreite, die 95 % der Energie enthält – erreichbar sein. Durch die Anwendung der erhaltenen Grenzen auf einen bandbegrenzten überabgetasteten 1-Bit quantisierten Multiple-Input Multiple-Output-Kanal zeigen wir Vorteile durch die Verwendung geeigneter Leistungsverteilungsschemata. Als Modulationsverfahren mit konstanter Hüllkurve betrachten wir kontinuierliche Phasenmodulation, um die Anforderungen an die Linearität des Leistungsverstärkers zu verringern. Beschränkungen für die erreichbare Datenrate bei rauschfreier Übertragung auf Zwischenfrequenzen mit Modulationsalphabeten höherer Ordnung werden für Phase-shift keying (PSK) and Continuous-phase frequency-shift keying (CPFSK) untersucht. Weiterhin werden angepasste Signalformen entworfen, die als FTN-CPFSK beschrieben werden können. Mit der gleichen spektralen Effizienz im Hoch-SNR-Bereich wie PSK und CPFSK bieten diese Signalformen eine deutlich verbesserte Bitfehlerrate (BER). Die Verringerung des erforderlichen SNRs zur Erreichung einer bestimmten BER kann bis zu 20 dB betragen

    Capacity and coding in digital communications

    Get PDF
    +164hlm.;24c

    High-performance compression of visual information - A tutorial review - Part I : Still Pictures

    Get PDF
    Digital images have become an important source of information in the modern world of communication systems. In their raw form, digital images require a tremendous amount of memory. Many research efforts have been devoted to the problem of image compression in the last two decades. Two different compression categories must be distinguished: lossless and lossy. Lossless compression is achieved if no distortion is introduced in the coded image. Applications requiring this type of compression include medical imaging and satellite photography. For applications such as video telephony or multimedia applications, some loss of information is usually tolerated in exchange for a high compression ratio. In this two-part paper, the major building blocks of image coding schemes are overviewed. Part I covers still image coding, and Part II covers motion picture sequences. In this first part, still image coding schemes have been classified into predictive, block transform, and multiresolution approaches. Predictive methods are suited to lossless and low-compression applications. Transform-based coding schemes achieve higher compression ratios for lossy compression but suffer from blocking artifacts at high-compression ratios. Multiresolution approaches are suited for lossy as well for lossless compression. At lossy high-compression ratios, the typical artifact visible in the reconstructed images is the ringing effect. New applications in a multimedia environment drove the need for new functionalities of the image coding schemes. For that purpose, second-generation coding techniques segment the image into semantically meaningful parts. Therefore, parts of these methods have been adapted to work for arbitrarily shaped regions. In order to add another functionality, such as progressive transmission of the information, specific quantization algorithms must be defined. A final step in the compression scheme is achieved by the codeword assignment. Finally, coding results are presented which compare stateof- the-art techniques for lossy and lossless compression. The different artifacts of each technique are highlighted and discussed. Also, the possibility of progressive transmission is illustrated
    corecore