1,797 research outputs found

    The Verifying Compiler: A Grand Challenge for Computing Research

    Get PDF
    Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn from Computer Science, it revives an old challenge: the construction and application of a verifying compiler that guarantees correctness of a program before running it. Introduction. The primary purpose of the formulation and promulgation of a grand challenge is the advancement of science or engineering. A grand challenge represents a commitment by a significant section of the research community to work together towards a common goal, agreed to be valuable and achievable by a team effort within a predicted timescale. The challenge is formulated by th

    The Verifying Compiler, a Grand Challenge for Computing Research

    Full text link

    The Verifying Compiler: A Grand Challenge for Computing Research

    Full text link

    Verified Compilation and the B Method: A Proposal and a First Appraisal

    Get PDF
    AbstractThis paper investigates the application of the B method beyond the classical algorithmic level provided by the B0 sub-language, and presents refinements of B models at a level of precision equivalent to assembly language. We claim and justify that this extension provides a more reliable software development process as it bypasses two of the less trustable steps in the application of the B method: code synthesis and compilation. The results presented in the paper have a value as a proof of concept and may be used as a basis to establish an agenda for the development of an approach to build verifying compilers [Hoare, C. A. R., The verifying compiler, a grand challenge for computing research, in: VMCAI, 2005, pp. 78–78] based on the B method

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Checking Computations of Formal Method Tools - A Secondary Toolchain for ProB

    Full text link
    We present the implementation of pyB, a predicate - and expression - checker for the B language. The tool is to be used for a secondary tool chain for data validation and data generation, with ProB being used in the primary tool chain. Indeed, pyB is an independent cleanroom-implementation which is used to double-check solutions generated by ProB, an animator and model-checker for B specifications. One of the major goals is to use ProB together with pyB to generate reliable outputs for high-integrity safety critical applications. Although pyB is still work in progress, the ProB/pyB toolchain has already been successfully tested on various industrial B machines and data validation tasks.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    What can we expect from program verification?

    Get PDF
    Program verification assumes a formal program specification. In software-intensive systems, such specifications must depend on formalization of the natural, nonformal problem world. This formalization is inevitably imperfect, and poses major difficulties of structure and reasoning. Appropriate verification tools can help address these difficulties and improve system reliabilit
    • …
    corecore