27,096 research outputs found

    A Computational Study of Genetic Crossover Operators for Multi-Objective Vehicle Routing Problem with Soft Time Windows

    Full text link
    The article describes an investigation of the effectiveness of genetic algorithms for multi-objective combinatorial optimization (MOCO) by presenting an application for the vehicle routing problem with soft time windows. The work is motivated by the question, if and how the problem structure influences the effectiveness of different configurations of the genetic algorithm. Computational results are presented for different classes of vehicle routing problems, varying in their coverage with time windows, time window size, distribution and number of customers. The results are compared with a simple, but effective local search approach for multi-objective combinatorial optimization problems

    On the vehicle routing problem with time windows

    Get PDF

    The generalized vehicle routing problem with time windows

    Get PDF
    International audienc

    Reachability cuts for the vehicle routing problem with time windows

    Get PDF
    This paper introduces a class of cuts, called reachability cuts, for the Vehicle Routing Problem with Time Windows (VRPTW). Reachability cuts are closely related to cuts derived from precedence constraints in the Asymmetric Traveling Salesman Problem with Time Windows and to k-path cuts for the VRPTW. In particular, any reachability cut dominates one or more k-path cuts. The paper presents separation procedures for reachability cuts and reports computational experiments on well-known VRPTW instances. The computational results suggest that reachability cuts can be highly useful as cutting planes for certain VRPTW instances.Routing; time windows; precedence constraints

    Tackling Dynamic Vehicle Routing Problem with Time Windows by means of Ant Colony System

    Full text link
    The Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) is an extension of the well-known Vehicle Routing Problem (VRP), which takes into account the dynamic nature of the problem. This aspect requires the vehicle routes to be updated in an ongoing manner as new customer requests arrive in the system and must be incorporated into an evolving schedule during the working day. Besides the vehicle capacity constraint involved in the classical VRP, DVRPTW considers in addition time windows, which are able to better capture real-world situations. Despite this, so far, few studies have focused on tackling this problem of greater practical importance. To this end, this study devises for the resolution of DVRPTW, an ant colony optimization based algorithm, which resorts to a joint solution construction mechanism, able to construct in parallel the vehicle routes. This method is coupled with a local search procedure, aimed to further improve the solutions built by ants, and with an insertion heuristics, which tries to reduce the number of vehicles used to service the available customers. The experiments indicate that the proposed algorithm is competitive and effective, and on DVRPTW instances with a higher dynamicity level, it is able to yield better results compared to existing ant-based approaches.Comment: 10 pages, 2 figure
    • …
    corecore