6,946 research outputs found

    Coordination of production scheduling and vehicle routing problem with release and due date

    Get PDF
    This work is concerned with solving the vehicle routing problem (VRP) which takes into account the customer’s release and due date. The problem studied can also be categorized as a non-classical VRP as the departure times of vehicles depend on the dates of orders released from the production line and become available for the distribution process. The problem is investigated through two stages. In the first stage, vehicle routing problem with release and due date (VRPRDD) is treated. At the beginning of the planning, it is assumed that the dates where the customer orders become available are known. A mathematical formulation is developed to represent the problem which solved by several heuristics, i.e. Variable Neighborhood Search (VNS), Large Neighborhood Search (LNS) and Tabu Search (TS). The algorithms are written in C++ and run on a PC computer with an Intel PentiumCore by using 56’s Solomon instances with some modification. Different kinds of vehicle routing problem have been tackled in order to see the performance of proposed heuristics. The results are then compared in order to find the best method which yields the least routing cost solution. From the outcome obtained, VNS is proved to be the best algorithm which generates the least cost solution to our problem. Further investigation has been carried out in stage two which considers the extension of VRPRDD. The coordination of production sequence and vehicle routing (PS-VRPRDD) is the main subject to our problem studied in which the best production sequence will leads to the least routing. Classical decomposition approach, namely Alternateis used which decompose the problems into two sub-problems, i.e. production sequence and vehicle routing. The results proved that effective coordination shows the large potential savings that attract the interest of industrial distributors in optimizing their distribution process in practice

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    The Multi Trip Vehicle Routing Problem with Time Windows and Release Dates

    Get PDF
    The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates is a variant of the Multi-Trip Vehicle Routing Problem where a time windows is associated with each customer and a release date is associated with each merchandise to be delivered at a certain client. The release date represents the moment the merchandise becomes available at the depot for final delivery. The problem is relevant in city logistics context, where delivery systems based on city distribution centers (CDC) are studied. Trucks arrive at the CDC during the whole working day to deliver goods that are transferred to eco-friendly vehicles in charge of accomplish final deliveries to customers. We propose a population-based algorithm for the problem based on giant tour representation of the chromosomes as well as a split procedure to obtain solutions from individuals

    Solving the Traveling Salesman Problem with release dates via branch and cut

    Get PDF
    In this paper we study the Traveling Salesman Problem with release dates (TSP-rd) and completion time minimization. The TSP-rd considers a single vehicle and a set of customers that must be served exactly once with goods that arrive to the depot over time, during the planning horizon. The time at which each requested good arrives is called release date and it is known in advance. The vehicle can perform multiple routes, however, it cannot depart to serve a customer before the associated release date. Thus, the release date of the customers in each route must not be greater than the starting time of the route. The objective is to determine a set of routes for the vehicle, starting and ending at the depot, where the completion time needed to serve all customers is minimized. We propose a new Integer Linear Programming model and develop a branch and cut algorithm with tailored enhancements to improve its performance. The algorithm proved to be able to significantly reduce the computation times when compared to a compact formulation tackled using a commercial mathematical programming solver, obtaining 24 new optimal solutions on benchmark instances with up to 30 customers within one hour. We further extend the benchmark to instances with up to 50 customers where the algorithm proved to be efficient. Building upon these results, the proposed model is adapted to new TSP-rd variants (Capacitated and Prize-Collecting TSP), with different objectives: completion time minimization and traveling distance minimization. To the best of our knowledge, our work is the first in-depth study to report extensive results for the TSP-rd through a branch and cut, establishing a baseline and providing insights for future approaches. Overall, the approach proved to be very effective and gives a flexible framework for several variants, opening the discussion about formulations, algorithms and new benchmark instances

    Integrated zone picking and vehicle routing operations with restricted intermediate storage

    Get PDF
    The competitiveness of a retailer is highly dependent on an efficient distribution system. This is especially true for the supply of stores from distribution centers. Stores ask for high flexibility when it comes to their supply. This means that fast order processing is essential. Order processing affects different subsystems at the distribution center: Orders are picked in multiple picking zones, transferred to intermediate storage, and delivered via dedicated tours. These processing steps are highly interdependent. The schedule for picking needs to be synchronized with the routing decisions to ensure availability of the delivery orders at the DC’s loading docks when their associated tours are scheduled. Concurrently, intermediate storage represents a bottleneck as capacities for order storage are limited. The simultaneous planning of picking and routing operations with restricted intermediate storage is therefore relevant for retail practice but has not so far been considered within an integrated planning approach. Our work addresses this task and discusses an integrated zone picking and vehicle routing problem with restricted intermediate storage. We present a comprehensive model formulation and introduce a general variable neighborhood search for simultaneous consideration of the given planning stages. We also present two alternative sequential approaches that are motivated by the prevailing planning situation in industry. Numerical experiments that we have conducted show the need for an integrated planning approach to obtain practicable results. Further, we identify the impact of the main problem characteristics on the overall planning problem and provide valuable insights for the application of this approach in industry

    Enriching the tactical network design of express service carriers with fleet scheduling characteristics

    Get PDF
    Express service carriers provide time-guaranteed deliveries of parcels via a network consisting of nodes and hubs. In this, nodes take care of the collection and delivery of parcels, and hubs have the function to consolidate parcels in between the nodes. The tactical network design problem assigns nodes to hubs, determines arcs between hubs, and routes parcels through the network. Afterwards, fleet scheduling creates a schedule for vehicles operated in the network. The strong relation between flow routing and fleet scheduling makes it difficult to optimise the network cost. Due to this complexity, fleet scheduling and network design are usually decoupled. We propose a new tactical network design model that is able to include fleet scheduling characteristics (like vehicle capacities, vehicle balancing, and drivers' legislations) in the network design. The model is tested on benchmark data based on instances from an express provider, resulting in significant cost reductions
    • …
    corecore