33,626 research outputs found

    Optimizing departure times in vehicle routes

    Get PDF
    Most solution methods for the vehicle routing problem with time\ud windows (VRPTW) develop routes from the earliest feasible departure time. However, in practice, temporal traffic congestions make\ud that such solutions are not optimal with respect to minimizing the\ud total duty time. Furthermore, VRPTW solutions do not account for\ud complex driving hours regulations, which severely restrict the daily\ud travel time available for a truck driver. To deal with these problems,\ud we consider the vehicle departure time optimization (VDO) problem\ud as a post-processing step of solving a VRPTW. We propose an ILP-formulation that minimizes the total duty time. The obtained solutions are feasible with respect to driving hours regulations and they\ud account for temporal traffic congestions by modeling time-dependent\ud travel times. For the latter, we assume a piecewise constant speed\ud function. Computational experiments show that problem instances\ud of realistic sizes can be solved to optimality within practical computation times. Furthermore, duty time reductions of 8 percent can\ud be achieved. Finally, the results show that ignoring time-dependent\ud travel times and driving hours regulations during the development of\ud vehicle routes leads to many infeasible vehicle routes. Therefore, vehicle routing methods should account for these real-life restrictions

    A General Vehicle Routing Problem

    Get PDF
    In this paper, we study a rich vehicle routing problem incorporating various complexities found in real-life applications. The General Vehicle Routing Problem (GVRP) is a combined load acceptance and generalised vehicle routing problem. Among the real-life requirements are time window restrictions, a heterogeneous vehicle fleet with different travel times, travel costs and capacity, multi-dimensional capacity constraints, order/vehicle compatibility constraints, orders with multiple pickup, delivery and service locations, different start and end locations for vehicles, and route restrictions for vehicles. The GVRP is highly constrained and the search space is likely to contain many solutions such that it is impossible to go from one solution to another using a single neighbourhood structure. Therefore, we propose iterative improvement approaches based on the idea of changing the neighbourhood structure during the search

    Vehicle Routing with Traffic Congestion and Drivers' Driving and Working Rules

    Get PDF
    For the intensively studied vehicle routing problem (VRP), two real-life restrictions have received only minor attention in the VRP-literature: traffic congestion and driving hours regulations. Traffic congestion causes late arrivals at customers and long travel times resulting in large transport costs. To account for traffic congestion, time-dependent travel times should be considered when constructing vehicle routes. Next, driving hours regulations, which restrict the available driving and working times for truck drivers, must be respected. Since violations are severely fined, also driving hours regulations should be considered when constructing vehicle routes, even more in combination with congestion problems. The objective of this paper is to develop a solution method for the VRP with time windows (VRPTW), time-dependent travel times, and driving hours regulations. The major difficulty of this VRPTW extension is to optimize each vehicle’s departure times to minimize the duty time of each driver. Having compact duty times leads to cost savings. However, obtaining compact duty times is much harder when time-dependent travel times and driving hours regulations are considered. We propose a restricted dynamic programming (DP) heuristic for constructing the vehicles routes, and an efficient heuristic for optimizing the vehicle’s departure times for each (partial) vehicle route, such that the complete solution algorithm runs in polynomial time. Computational experiments emonstrate the trade-off between travel distance minimization and duty time minimization, and illustrate the cost savings of extending the depot opening hours such that traveling before the morning peak and after the evening peak becomes possible

    Neutrosophic Genetic Algorithm for solving the Vehicle Routing Problem with uncertain travel times

    Get PDF
    The Vehicle Routing Problem (VRP) has been extensively studied by different researchers from all over the world in recent years. Multiple solutions have been proposed for different variations of the problem, such as Capacitive Vehicle Routing Problem (CVRP), Vehicle Routing Problem with Time Windows (VRP-TW), Vehicle Routing Problem with Pickup and Delivery (VRPPD), among others, all of them with deterministic times. In the last years, researchers have been interested in including in their different models the variations that travel times may experience when exposed to all kind of phenomena, mainly vehicle traffic. This article addresses the VRP from this perspective, proposing the design and implementation of a genetic algorithm based on neutrosophic theory for calculating the fitness function of each route, considering the variability and uncertainty present in travel times. A deterministic genetic algorithm is also implemented with the average travel times to compare it with the neutrosophic algorithm using simulation. As conclusion, a deterministic algorithm does not necessarily generate the best solution in the real world, full of uncertainty. Also, the quantification of uncertainty using neutrosophic theory can be used in route planning, opening a broad and interesting field of research for future investigations

    Stochastic vehicle routing with random time dependent travel times subject to perturbations

    Get PDF
    Assigning and scheduling vehicle routes in a stochastic time dependent environment is a crucial management problem. The assumption that in a real-life environment everything goes according to an a priori determined static schedule is unrealistic, resulting in a planning gap (i.e. difference in performance between planned route and actual route). Our methodology introduces the traffic congestion component based on queueing theory, thereby introducing an analytical expression for the expected travel. In real life travel times are subject to uncertainty, we solve a time dependent vehicle routing problem to find robust solutions, that can potentially absorb such uncertainties. We model uncertainty as perturbations that are randomly inserted on the routes, we optimize the perturbed solutions via Tabu Search. We conduct experiments on a set of 32 cities, and found that the perturbed solutions generally cope better with the uncertainty than the non-perturbed solutions, with a small increase in expected travel times

    Models and Metaheuristics For Vehicle Routing Problems Under Uncertainty

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Within the logistics and transportation industry, the vehicle routing problem (VRP) bears significant importance in many real-life logistics activities. As one of the most important and widely studied combinatorial optimization problems in the past sixty years, the VRP, also known as the capacitated VRP (CVRP), focuses on minimizing transportation costs: it concerns how to serve a set of geographically dispersed customers with a fleet of homogeneous vehicles at minimum cost. Given the potentially substantial savings from optimizing routing strategies in practical logistics activities, various complex extensions of the CVRP inspired from real-life applications have increasingly received attention. In the CVRP and most of its extensions, a common assumption is that the values of all problem parameters are readily available and can be precisely known in advance. However, this assumption does not invariably hold in many practical routing problems due to uncertainty, which could be secondary to factors such as imprecise information on customer demands, unfixed service times for customers, and varying travel times for vehicles. Thus, routing strategies generated without considering uncertainty may ultimately be found infeasible in real-life applications. This thesis studies three important extensions of the CVRP under uncertainty. Firstly, we study the vehicle routing problem with time windows considering uncertainty in customer demands, service times, and travel times. Secondly, we study the vehicle routing problem with simultaneous pickup and delivery and time windows under pickup demand and travel time uncertainty. Finally, we study the two-echelon multiple-trip vehicle routing problem with time windows and satellite synchronization under customer demand uncertainty. To model these problems, we adopt the robust optimization paradigm and present three robust mathematical formulations with novel uncertainty sets. Given their complexity, we propose efficient metaheuristic solution approaches. We conduct extensive numerical experiments which employ benchmark instances from the literature. The computational results show that the proposed solution approaches can generate high-quality deterministic and robust solutions for large-sized instances within a reasonable running time. In addition, Monte Carlo simulation tests are designed to evaluate the robustness of the obtained solutions. Useful managerial insights for decision-makers in the logistics and transportation industry are derived from a comprehensive analysis of the computational results

    A dynamic programming heuristic for vehicle routing with time-dependent travel times and required breaks.

    Get PDF
    For the intensively studied vehicle routing problem (VRP), two real-life restrictions have received only minor attention in the VRP-literature: traffic congestion and driving hours regulations. Traffic congestion causes late arrivals at customers and long travel times resulting in large transport costs. To account for traffic congestion, time-dependent travel times should be considered when constructing vehicle routes. Next, driving hours regulations, which restrict the available driving and working times for truck drivers, must be respected. Since violations are severely fined, also driving hours regulations should be considered when constructing vehicle routes, even more in combination with congestion problems. The objective of this paper is to develop a solution method for the VRP with time windows (VRPTW), time-dependent travel times, and driving hours regulations. The major difficulty of this VRPTW extension is to optimize each vehicle’s departure times to minimize the duty time of each driver. Having compact duty times leads to cost savings. However, obtaining compact duty times is much harder when time-dependent travel times and driving hours regulations are considered. We propose a restricted dynamic programming (DP) heuristic for constructing the vehicle routes, and an efficient heuristic for optimizing the vehicle’s departure times for each (partial) vehicle route, such that the complete solution algorithm runs in polynomial time. Computational experiments demonstrate the trade-off between travel distance minimization and duty time minimization, and illustrate the cost savings of extending the depot opening hours such that traveling before the morning peak and after the evening peak becomes possible

    Assessing the value of information for retail distribution of perishable goods

    Get PDF
    "This paper addresses quantitative methods. for estimating the value of information from ITS in. urban freight distribution. A real-life application on. the retail distribution of perishable goods is considered.. The problem is formulated as a vehicle routing problem. with soft time windows and time-dependent travel. times, and solved by using information affected by. different degrees of detail and reliability. The practical. performance of these solutions is then evaluated by. simulation, to assess the joint benefit of using more reliable. and detailed information with different solution. algorithms.

    Recovering feasibility in real-time conflict-free vehicle routing

    Full text link
    Conflict-Free Vehicle Routing Problems (CF-VRPs) arise in manufacturing, transportation and logistics facilities where Automated Guided Vehicles (AGVs) are utilized to move loads. Unlike \textit{Vehicle Routing Problems} arising in distribution management, CF-VRPs explicitly consider the limited capacity of the arcs of the guide path network to avoid collisions among vehicles. AGV applications have two peculiar features. First, the uncertainty affecting both travel times and machine ready times may result in vehicle delays or anticipations with respect to the fleet nominal plan. Second, the relatively high vehicle speed (in the order of one or two meters per second) requires vehicle plans to be revised in a very short amount of time (usually few milliseconds) in order to avoid collisions. In this paper we present fast exact algorithms to recover plan feasibility in real-time. In particular, we identify two corrective actions that can be implemented in real-time and formulate the problem as a linear program with the aim to optimize four common performance measures (total vehicle delay, total weighted delay, maximum route duration and total lateness). Moreover, we develop tailored algorithms which, tested on randomly generated instances of various sizes, prove to be three orders of magnitude faster than using off-the-shelf solvers

    The time-dependent vehicle routing problem with soft time windows and stochastic travel times

    Get PDF
    This paper studies a vehicle routing problem with time-dependent and stochastic travel times. In our problem setting, customers have soft time windows. A mathematical model is used in which both efficiency for service as well as reliability for customers are taken into account. Depending on whether service times are included or not, we consider two versions of this problem. Two metaheuristics are built: a Tabu Search and an Adaptive Large Neighborhood Search. We carry out our experiments for well-known problem instances and perform comprehensive analyses on the numerical results in terms of the computational time and the solution quality. Experiments confirm that the proposed procedure is effective to obtain very good solutions to be performed in real-life environment
    • …
    corecore