403,063 research outputs found

    A New Approach to Axial Vector Model Calculations II

    Get PDF
    We further develop the new approach, proposed in part I (hep-th/9807072), to computing the heat kernel associated with a Fermion coupled to vector and axial vector fields. We first use the path integral representation obtained for the heat kernel trace in a vector-axialvector background to derive a Bern-Kosower type master formula for the one-loop amplitude with MM vectors and NN axialvectors, valid in any even spacetime dimension. For the massless case we then generalize this approach to the full off-diagonal heat kernel. In the D=4 case the SO(4) structure of the theory can be broken down to SU(2)Ă—SU(2)SU(2) \times SU(2) by use of the 't Hooft symbols. Various techniques for explicitly evaluating the spin part of the path integral are developed and compared. We also extend the method to external fermions, and to the inclusion of isospin. On the field theory side, we obtain an extension of the second order formalism for fermion QED to an abelian vector-axialvector theory.Comment: Sequel to hep-th/9807072, references added, some clarifications and corrections, 29 pages, RevTex, 8 diagrams using epsfig.st

    Mathematical Tools for Calculation of the Effective Action in Quantum Gravity

    Full text link
    We review the status of covariant methods in quantum field theory and quantum gravity, in particular, some recent progress in the calculation of the effective action via the heat kernel method. We study the heat kernel associated with an elliptic second-order partial differential operator of Laplace type acting on smooth sections of a vector bundle over a Riemannian manifold without boundary. We develop a manifestly covariant method for computation of the heat kernel asymptotic expansion as well as new algebraic methods for calculation of the heat kernel for covariantly constant background, in particular, on homogeneous bundles over symmetric spaces, which enables one to compute the low-energy non-perturbative effective action.Comment: 71 pages, 2 figures, submitted for publication in the Springer book (in preparation) "Quantum Gravity", edited by B. Booss-Bavnbek, G. Esposito and M. Lesc

    Weak convergence results for inhomogeneous rotating fluid equations

    Get PDF
    We consider the equations governing incompressible, viscous fluids in three space dimensions, rotating around an inhomogeneous vector B(x): this is a generalization of the usual rotating fluid model (where B is constant). We prove the weak convergence of Leray--type solutions towards a vector field which satisfies the usual 2D Navier--Stokes equation in the regions of space where B is constant, with Dirichlet boundary conditions, and a heat--type equation elsewhere. The method of proof uses weak compactness arguments

    Effect of Distributed Superficial-Velocity in Deep-Bed Grain Drying

    Get PDF
    This paper deals with influence of velocity field distribution to heat and mass transfer process in deep bed grain dryers. Two-dimensional (2D) models of deep-bed grain dryers were built by considering simultaneously momentum, heat, and mass transfer in the drying air phase. The Navier-Stokes momentum equations are applied to simulate pressure drop and velocity field of the drying airflow. Effect of velocity distribution to the heat and mass transfer coefficient distribution were simulated along the height of grains bed. The dynamic equations are solved numerically by using finite difference method by utilization of alternating direction implicit method, while the momentum equations are solved numerically by utilization of SIMPLE algorithm. The simulation results showed that velocity distribution along the grains bed - 5 cm of bed height - did not so influenced to the heat and mass transfer coefficient. Further, the vector plot of drying air superficial velocity field and contour of pressure distribution along deep bed of grain was simulated

    Exact heat kernel on a hypersphere and its applications in kernel SVM

    Full text link
    Many contemporary statistical learning methods assume a Euclidean feature space. This paper presents a method for defining similarity based on hyperspherical geometry and shows that it often improves the performance of support vector machine compared to other competing similarity measures. Specifically, the idea of using heat diffusion on a hypersphere to measure similarity has been previously proposed, demonstrating promising results based on a heuristic heat kernel obtained from the zeroth order parametrix expansion; however, how well this heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown. This paper presents a higher order parametrix expansion of the heat kernel on a unit hypersphere and discusses several problems associated with this expansion method. We then compare the heuristic kernel with an exact form of the heat kernel expressed in terms of a uniformly and absolutely convergent series in high-dimensional angular momentum eigenmodes. Being a natural measure of similarity between sample points dwelling on a hypersphere, the exact kernel often shows superior performance in kernel SVM classifications applied to text mining, tumor somatic mutation imputation, and stock market analysis

    Solving magnetostatic field problems with NASTRAN

    Get PDF
    Determining the three-dimensional magnetostatic field in current-induced situations has usually involved vector potentials, which can lead to excessive computational times. How such magnetic fields may be determined using scalar potentials is reviewed. It is shown how the heat transfer capability of NASTRAN level 17 was modified to take advantage of the new method

    Covariant techniques for computation of the heat kernel

    Get PDF
    The heat kernel associated with an elliptic second-order partial differential operator of Laplace type acting on smooth sections of a vector bundle over a Riemannian manifold, is studied. A general manifestly covariant method for computation of the coefficients of the heat kernel asymptotic expansion is developed. The technique enables one to compute explicitly the diagonal values of the heat kernel coefficients, so called Hadamard-Minackshisundaram-De Witt-Seeley coefficients, as well as their derivatives. The elaborated technique is applicable for a manifold of arbitrary dimension and for a generic Riemannian metric of arbitrary signature. It is very algorithmic, and well suited to automated computation. The fourth heat kernel coefficient is computed explicitly for the first time. The general structure of the heat kernel coefficients is investigated in detail. On the one hand, the leading derivative terms in all heat kernel coefficients are computed. On the other hand, the generating functions in closed covariant form for the covariantly constant terms and some low-derivative terms in the heat kernel coefficients are constructed by means of purely algebraic methods. This gives, in particular, the whole sequence of heat kernel coefficients for an arbitrary locally symmetric space.Comment: 31 pages, LaTeX, no figures, Invited Lecture at the University of Iowa, Iowa City, April, 199
    • …
    corecore