20,111 research outputs found

    Rational Deployment of CSP Heuristics

    Full text link
    Heuristics are crucial tools in decreasing search effort in varied fields of AI. In order to be effective, a heuristic must be efficient to compute, as well as provide useful information to the search algorithm. However, some well-known heuristics which do well in reducing backtracking are so heavy that the gain of deploying them in a search algorithm might be outweighed by their overhead. We propose a rational metareasoning approach to decide when to deploy heuristics, using CSP backtracking search as a case study. In particular, a value of information approach is taken to adaptive deployment of solution-count estimation heuristics for value ordering. Empirical results show that indeed the proposed mechanism successfully balances the tradeoff between decreasing backtracking and heuristic computational overhead, resulting in a significant overall search time reduction.Comment: 7 pages, 2 figures, to appear in IJCAI-2011, http://www.ijcai.org

    Taxonomy Induction using Hypernym Subsequences

    Get PDF
    We propose a novel, semi-supervised approach towards domain taxonomy induction from an input vocabulary of seed terms. Unlike all previous approaches, which typically extract direct hypernym edges for terms, our approach utilizes a novel probabilistic framework to extract hypernym subsequences. Taxonomy induction from extracted subsequences is cast as an instance of the minimumcost flow problem on a carefully designed directed graph. Through experiments, we demonstrate that our approach outperforms stateof- the-art taxonomy induction approaches across four languages. Importantly, we also show that our approach is robust to the presence of noise in the input vocabulary. To the best of our knowledge, no previous approaches have been empirically proven to manifest noise-robustness in the input vocabulary

    280 Birds with One Stone: Inducing Multilingual Taxonomies from Wikipedia using Character-level Classification

    Get PDF
    We propose a simple, yet effective, approach towards inducing multilingual taxonomies from Wikipedia. Given an English taxonomy, our approach leverages the interlanguage links of Wikipedia followed by character-level classifiers to induce high-precision, high-coverage taxonomies in other languages. Through experiments, we demonstrate that our approach significantly outperforms the state-of-the-art, heuristics-heavy approaches for six languages. As a consequence of our work, we release presumably the largest and the most accurate multilingual taxonomic resource spanning over 280 languages

    Unbiased Comparative Evaluation of Ranking Functions

    Full text link
    Eliciting relevance judgments for ranking evaluation is labor-intensive and costly, motivating careful selection of which documents to judge. Unlike traditional approaches that make this selection deterministically, probabilistic sampling has shown intriguing promise since it enables the design of estimators that are provably unbiased even when reusing data with missing judgments. In this paper, we first unify and extend these sampling approaches by viewing the evaluation problem as a Monte Carlo estimation task that applies to a large number of common IR metrics. Drawing on the theoretical clarity that this view offers, we tackle three practical evaluation scenarios: comparing two systems, comparing kk systems against a baseline, and ranking kk systems. For each scenario, we derive an estimator and a variance-optimizing sampling distribution while retaining the strengths of sampling-based evaluation, including unbiasedness, reusability despite missing data, and ease of use in practice. In addition to the theoretical contribution, we empirically evaluate our methods against previously used sampling heuristics and find that they generally cut the number of required relevance judgments at least in half.Comment: Under review; 10 page

    Nominalist Heuristics and Economic Theory

    Get PDF
    This paper introduces a new theoretic entity, a nominalist heuristic, defined as a focus on prominent numbers, indices or ratios. Abstractions used in the evaluation stage of decision making typically involve nominalist heuristics that are incompatible with expected utility theory which excludes the evaluation stage, and are also incompatible with prospect theory which assumes that, while the evaluation procedure can involve systematic mistakes, the overall decision situation is nevertheless sufficiently simple: 1) for economists and psychologists to identify what is a mistake, and 2) to be compatible with maximisation. But in the typical complex situation giving rise to nominalist heuristics neither 1) nor 2) hold, and therefore what is required is a fundamentally different class of models that allow for the progressive anticipated changes in knowledge ahead faced under risk and uncertainty, namely models under the umbrella of SKAT, the Stages of Knowledge Ahead Theory. A sequel paper. Pope et al 2009b, shows field and laboratory evidence of heuristics in the form of prominent numbers entering exchange rate determination.nominalism, money illusion, heuristic, unpredictability, experiment, SKAT the Stages of Knowledge Ahead Theory, prominent numbers, prominent indices, prominent ratios, equality, historical benchmarks, complexity, decision costs, evaluation
    • 

    corecore