9,173 research outputs found

    Embedded techniques for choosing the parameter in Tikhonov regularization

    Full text link
    This paper introduces a new strategy for setting the regularization parameter when solving large-scale discrete ill-posed linear problems by means of the Arnoldi-Tikhonov method. This new rule is essentially based on the discrepancy principle, although no initial knowledge of the norm of the error that affects the right-hand side is assumed; an increasingly more accurate approximation of this quantity is recovered during the Arnoldi algorithm. Some theoretical estimates are derived in order to motivate our approach. Many numerical experiments, performed on classical test problems as well as image deblurring are presented

    A GCV based Arnoldi-Tikhonov regularization method

    Full text link
    For the solution of linear discrete ill-posed problems, in this paper we consider the Arnoldi-Tikhonov method coupled with the Generalized Cross Validation for the computation of the regularization parameter at each iteration. We study the convergence behavior of the Arnoldi method and its properties for the approximation of the (generalized) singular values, under the hypothesis that Picard condition is satisfied. Numerical experiments on classical test problems and on image restoration are presented

    Regularization matrices determined by matrix nearness problems

    Get PDF
    This paper is concerned with the solution of large-scale linear discrete ill-posed problems with error-contaminated data. Tikhonov regularization is a popular approach to determine meaningful approximate solutions of such problems. The choice of regularization matrix in Tikhonov regularization may significantly affect the quality of the computed approximate solution. This matrix should be chosen to promote the recovery of known important features of the desired solution, such as smoothness and monotonicity. We describe a novel approach to determine regularization matrices with desired properties by solving a matrix nearness problem. The constructed regularization matrix is the closest matrix in the Frobenius norm with a prescribed null space to a given matrix. Numerical examples illustrate the performance of the regularization matrices so obtained
    • …
    corecore