59,657 research outputs found

    Proposing a Localized Relevance Vector Machine for Pattern Classification

    Full text link
    Relevance vector machine (RVM) can be seen as a probabilistic version of support vector machines which is able to produce sparse solutions by linearly weighting a small number of basis functions instead using all of them. Regardless of a few merits of RVM such as giving probabilistic predictions and relax of parameter tuning, it has poor prediction for test instances that are far away from the relevance vectors. As a solution, we propose a new combination of RVM and k-nearest neighbor (k-NN) rule which resolves this issue with regionally dealing with every test instance. In our settings, we obtain the relevance vectors for each test instance in the local area given by k-NN rule. In this way, relevance vectors are closer and more relevant to the test instance which results in a more accurate model. This can be seen as a piece-wise learner which locally classifies test instances. The model is hence called localized relevance vector machine (LRVM). The LRVM is examined on several datasets of the University of California, Irvine (UCI) repository. Results supported by statistical tests indicate that the performance of LRVM is competitive as compared with a few state-of-the-art classifiers

    A Survey on Multi-View Clustering

    Full text link
    With advances in information acquisition technologies, multi-view data become ubiquitous. Multi-view learning has thus become more and more popular in machine learning and data mining fields. Multi-view unsupervised or semi-supervised learning, such as co-training, co-regularization has gained considerable attention. Although recently, multi-view clustering (MVC) methods have been developed rapidly, there has not been a survey to summarize and analyze the current progress. Therefore, this paper reviews the common strategies for combining multiple views of data and based on this summary we propose a novel taxonomy of the MVC approaches. We further discuss the relationships between MVC and multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated. To promote future development of MVC, we envision several open problems that may require further investigation and thorough examination.Comment: 17 pages, 4 figure

    Efficient Pairwise Learning Using Kernel Ridge Regression: an Exact Two-Step Method

    Full text link
    Pairwise learning or dyadic prediction concerns the prediction of properties for pairs of objects. It can be seen as an umbrella covering various machine learning problems such as matrix completion, collaborative filtering, multi-task learning, transfer learning, network prediction and zero-shot learning. In this work we analyze kernel-based methods for pairwise learning, with a particular focus on a recently-suggested two-step method. We show that this method offers an appealing alternative for commonly-applied Kronecker-based methods that model dyads by means of pairwise feature representations and pairwise kernels. In a series of theoretical results, we establish correspondences between the two types of methods in terms of linear algebra and spectral filtering, and we analyze their statistical consistency. In addition, the two-step method allows us to establish novel algorithmic shortcuts for efficient training and validation on very large datasets. Putting those properties together, we believe that this simple, yet powerful method can become a standard tool for many problems. Extensive experimental results for a range of practical settings are reported

    Multiple Kernel Learning and Automatic Subspace Relevance Determination for High-dimensional Neuroimaging Data

    Full text link
    Alzheimer's disease is a major cause of dementia. Its diagnosis requires accurate biomarkers that are sensitive to disease stages. In this respect, we regard probabilistic classification as a method of designing a probabilistic biomarker for disease staging. Probabilistic biomarkers naturally support the interpretation of decisions and evaluation of uncertainty associated with them. In this paper, we obtain probabilistic biomarkers via Gaussian Processes. Gaussian Processes enable probabilistic kernel machines that offer flexible means to accomplish Multiple Kernel Learning. Exploiting this flexibility, we propose a new variation of Automatic Relevance Determination and tackle the challenges of high dimensionality through multiple kernels. Our research results demonstrate that the Gaussian Process models are competitive with or better than the well-known Support Vector Machine in terms of classification performance even in the cases of single kernel learning. Extending the basic scheme towards the Multiple Kernel Learning, we improve the efficacy of the Gaussian Process models and their interpretability in terms of the known anatomical correlates of the disease. For instance, the disease pathology starts in and around the hippocampus and entorhinal cortex. Through the use of Gaussian Processes and Multiple Kernel Learning, we have automatically and efficiently determined those portions of neuroimaging data. In addition to their interpretability, our Gaussian Process models are competitive with recent deep learning solutions under similar settings.Comment: The material presented here is to promote the dissemination of scholarly and technical work in a timely fashion. Data in this article are from ADNI (adni.loni.usc.edu). As such, ADNI provided data but did not participate in writing of this repor

    ELKI: A large open-source library for data analysis - ELKI Release 0.7.5 "Heidelberg"

    Full text link
    This paper documents the release of the ELKI data mining framework, version 0.7.5. ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection. In order to achieve high performance and scalability, ELKI offers data index structures such as the R*-tree that can provide major performance gains. ELKI is designed to be easy to extend for researchers and students in this domain, and welcomes contributions of additional methods. ELKI aims at providing a large collection of highly parameterizable algorithms, in order to allow easy and fair evaluation and benchmarking of algorithms. We will first outline the motivation for this release, the plans for the future, and then give a brief overview over the new functionality in this version. We also include an appendix presenting an overview on the overall implemented functionality

    A Survey on Multi-Task Learning

    Full text link
    Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL. First, we classify different MTL algorithms into several categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach, and decomposition approach, and then discuss the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, batch MTL models are difficult to handle this situation and online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing are reviewed to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works. Finally, we present theoretical analyses and discuss several future directions for MTL

    A review of heterogeneous data mining for brain disorders

    Full text link
    With rapid advances in neuroimaging techniques, the research on brain disorder identification has become an emerging area in the data mining community. Brain disorder data poses many unique challenges for data mining research. For example, the raw data generated by neuroimaging experiments is in tensor representations, with typical characteristics of high dimensionality, structural complexity and nonlinear separability. Furthermore, brain connectivity networks can be constructed from the tensor data, embedding subtle interactions between brain regions. Other clinical measures are usually available reflecting the disease status from different perspectives. It is expected that integrating complementary information in the tensor data and the brain network data, and incorporating other clinical parameters will be potentially transformative for investigating disease mechanisms and for informing therapeutic interventions. Many research efforts have been devoted to this area. They have achieved great success in various applications, such as tensor-based modeling, subgraph pattern mining, multi-view feature analysis. In this paper, we review some recent data mining methods that are used for analyzing brain disorders

    Towards Ultrahigh Dimensional Feature Selection for Big Data

    Full text link
    In this paper, we present a new adaptive feature scaling scheme for ultrahigh-dimensional feature selection on Big Data. To solve this problem effectively, we first reformulate it as a convex semi-infinite programming (SIP) problem and then propose an efficient \emph{feature generating paradigm}. In contrast with traditional gradient-based approaches that conduct optimization on all input features, the proposed method iteratively activates a group of features and solves a sequence of multiple kernel learning (MKL) subproblems of much reduced scale. To further speed up the training, we propose to solve the MKL subproblems in their primal forms through a modified accelerated proximal gradient approach. Due to such an optimization scheme, some efficient cache techniques are also developed. The feature generating paradigm can guarantee that the solution converges globally under mild conditions and achieve lower feature selection bias. Moreover, the proposed method can tackle two challenging tasks in feature selection: 1) group-based feature selection with complex structures and 2) nonlinear feature selection with explicit feature mappings. Comprehensive experiments on a wide range of synthetic and real-world datasets containing tens of million data points with O(1014)O(10^{14}) features demonstrate the competitive performance of the proposed method over state-of-the-art feature selection methods in terms of generalization performance and training efficiency.Comment: 61 page

    Robust and Discriminative Labeling for Multi-label Active Learning Based on Maximum Correntropy Criterion

    Full text link
    Multi-label learning draws great interests in many real world applications. It is a highly costly task to assign many labels by the oracle for one instance. Meanwhile, it is also hard to build a good model without diagnosing discriminative labels. Can we reduce the label costs and improve the ability to train a good model for multi-label learning simultaneously? Active learning addresses the less training samples problem by querying the most valuable samples to achieve a better performance with little costs. In multi-label active learning, some researches have been done for querying the relevant labels with less training samples or querying all labels without diagnosing the discriminative information. They all cannot effectively handle the outlier labels for the measurement of uncertainty. Since Maximum Correntropy Criterion (MCC) provides a robust analysis for outliers in many machine learning and data mining algorithms, in this paper, we derive a robust multi-label active learning algorithm based on MCC by merging uncertainty and representativeness, and propose an efficient alternating optimization method to solve it. With MCC, our method can eliminate the influence of outlier labels that are not discriminative to measure the uncertainty. To make further improvement on the ability of information measurement, we merge uncertainty and representativeness with the prediction labels of unknown data. It can not only enhance the uncertainty but also improve the similarity measurement of multi-label data with labels information. Experiments on benchmark multi-label data sets have shown a superior performance than the state-of-the-art methods

    Prototype selection for interpretable classification

    Full text link
    Prototype methods seek a minimal subset of samples that can serve as a distillation or condensed view of a data set. As the size of modern data sets grows, being able to present a domain specialist with a short list of "representative" samples chosen from the data set is of increasing interpretative value. While much recent statistical research has been focused on producing sparse-in-the-variables methods, this paper aims at achieving sparsity in the samples. We discuss a method for selecting prototypes in the classification setting (in which the samples fall into known discrete categories). Our method of focus is derived from three basic properties that we believe a good prototype set should satisfy. This intuition is translated into a set cover optimization problem, which we solve approximately using standard approaches. While prototype selection is usually viewed as purely a means toward building an efficient classifier, in this paper we emphasize the inherent value of having a set of prototypical elements. That said, by using the nearest-neighbor rule on the set of prototypes, we can of course discuss our method as a classifier as well.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS495 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: text overlap with arXiv:0908.228
    • …
    corecore