552 research outputs found

    Remember to remember: A feasibility study adapting wearable technology to the needs of people aged 65 and older with Mild Cognitive Impairment (MCI) and Alzheimer's Dementia

    Get PDF
    Designing for a healthy life includes addressing the needs of an ageing population. The number of people aged 65 and older with mild cognitive impairment and dementia is rising. Whilst there is todate no pharmacological cure, treatments for symptoms and studies into the effect of nonpharmacological interventions have increasingly become available, with the goals of maintaining and supporting cognitive function, helping the person compensate for impairments, and improving the quality of life. Promising yet nascent is the use of wearable technology for cognitive rehabilitation. We conducted an exploratory feasibility study adapting wearable technologies to support the abovementioned elderly user group remember to remember their daily activities such as non-routine appointments. Six design concepts with smartwatches, smart bands, smartphones, smart calendar boards, NFC tags, and augmented reality glasses were sketched and two low-fidelity prototypes, Memofy and Komihu, were developed and tested with three patients and their caregivers. Technology acceptance was high both amongst patients and health personnel, encouraging further in-depth and longitudinal tests for health outcomes

    Development of a Sensor-Based Behavioral Monitoring Solution to Support Dementia Care

    Get PDF
    Background: Mobile and wearable technology presents exciting opportunities for monitoring behavior using widely available sensor data. This could support clinical research and practice aimed at improving quality of life among the growing number of people with dementia. However, it requires suitable tools for measuring behavior in a natural real-life setting that can be easily implemented by others. Objective: The objectives of this study were to develop and test a set of algorithms for measuring mobility and activity and to describe a technical setup for collecting the sensor data that these algorithms require using off-the-shelf devices. Methods: A mobility measurement module was developed to extract travel trajectories and home location from raw GPS (global positioning system) data and to use this information to calculate a set of spatial, temporal, and count-based mobility metrics. Activity measurement comprises activity bout extraction from recognized activity data and daily step counts. Location, activity, and step count data were collected using smartwatches and mobile phones, relying on open-source resources as far as possible for accessing data from device sensors. The behavioral monitoring solution was evaluated among 5 healthy subjects who simultaneously logged their movements for 1 week. Results: The evaluation showed that the behavioral monitoring solution successfully measures travel trajectories and mobility metrics from location data and extracts multimodal activity bouts during travel between locations. While step count could be used to indicate overall daily activity level, a concern was raised regarding device validity for step count measurement, which was substantially higher from the smartwatches than the mobile phones. Conclusions: This study contributes to clinical research and practice by providing a comprehensive behavioral monitoring solution for use in a real-life setting that can be replicated for a range of applications where knowledge about individual mobility and activity is relevant

    Adapting Mobile and Wearable Technology to Provide Support and Monitoring in Rehabilitation for Dementia:Feasibility Case Series

    Get PDF
    Background: Mobile and wearable devices are increasingly being used to support our everyday lives and track our behavior. Since daily support and behavior tracking are two core components of cognitive rehabilitation, such personal devices could be employed in rehabilitation approaches aimed at improving independence and engagement among people with dementia. Objective: The aim of this work was to investigate the feasibility of using smartphones and smartwatches to augment rehabilitation by providing adaptable, personalized support and objective, continuous measures of mobility and activity behavior. Methods: A feasibility study comprising 6 in-depth case studies was carried out among people with early-stage dementia and their caregivers. Participants used a smartphone and smartwatch for 8 weeks for personalized support and followed goals for quality of life. Data were collected from device sensors and logs, mobile self-reports, assessments, weekly phone calls, and interviews. This data were analyzed to evaluate the utility of sensor data generated by devices used by people with dementia in an everyday life context; this was done to compare objective measures with subjective reports of mobility and activity and to examine technology acceptance focusing on usefulness and health efficacy. Results: Adequate sensor data was generated to reveal behavioral patterns, even for minimal device use. Objective mobility and activity measures reflecting fluctuations in participants’ self-reported behavior, especially when combined, may be advantageous in revealing gradual trends and could provide detailed insights regarding goal attainment ratings. Personalized support benefited all participants to varying degrees by addressing functional, memory, safety, and psychosocial needs. A total of 4 of 6 (67%) participants felt motivated to be active by tracking their step count. One participant described a highly positive impact on mobility, anxiety, mood, and caregiver burden, mainly as a result of navigation support and location-tracking tools. Conclusions: Smartphones and wearables could provide beneficial and pervasive support and monitoring for rehabilitation among people with dementia. These results substantiate the need for further investigation on a larger scale, especially considering the inevitable presence of mobile and wearable technology in our everyday lives for years to come

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    BLE-GSpeed: A new BLE- based dataset to estimate user gait speed

    Get PDF
    To estimate the user gait speed can be crucial in many topics, such as health care systems, since the presence of difficulties in walking is a core indicator of health and function in aging and disease. Methods for non-invasive and continuous assessment of the gait speed may be key to enable early detection of cognitive diseases such as dementia or Alzheimer’s disease. Wearable technologies can provide innovative solutions for healthcare problems. Bluetooth Low Energy (BLE) technology is excellent for wearables because it is very energy efficient, secure, and inexpensive. In this paper, the BLE-GSpeed database is presented. The dataset is composed of several BLE RSSI measurements obtained while users were walking at a constant speed along a corridor. Moreover, a set of experiments using a baseline algorithm to estimate the gait speed are also presented to provide baseline results to the research community

    From Small to Big: Smartwatch Use in Mitigating COVID-19 – Understanding User Experience from Social Media Content Analysis

    Get PDF
    Smartwatches offer both functions and convenience that can have great potentials for technological interventions. Despite widespread discussion of technological interventions for COVID-19, smartwatch use has received little attention in the literature. This research aims to fill the literature gap by providing a broad understanding of smartwatch use for COVID-19 mitigation. We investigate smartwatch use through content analysis of the data collected from two social media platforms. The method allows us to draw on user experience beyond technological features and functions. In addition to functions, we also identified the concerns of using smartwatches for mitigating COVID-19. Furthermore, we uncovered both similarities and differences between the different social media platforms in terms of functions and concerns of smartwatch use. Our findings have implications for various stakeholders of the smartwatch technology and for mitigating the impact of the pandemic

    What features and functions are desired in telemedical services targeted at polish older adults delivered by wearable medical devices? : pre-COVID-19 flashback

    Get PDF
    The emerging wearable medical devices open up new opportunities for the provision of health services and promise to accelerate the development of novel telemedical services. The main objective of this study was to investigate the desirable features and applications of telemedical services for the Polish older adults delivered by wearable medical devices. The questionnaire study was conducted among 146 adult volunteers in two cohorts (C.1: <65 years vs. C.2: ≥65 years). The analysis was based on qualitative research and descriptive statistics. Comparisons were performed by Pearson’s chi-squared test. The questionnaire, which was divided into three parts (1-socio-demographic data, needs, and behaviors; 2-health status; 3-telemedicine service awareness and device concept study), consisted of 37 open, semi-open, or closed questions. Two cohorts were analyzed (C.1: n = 77; mean age = 32 vs. C.2: n = 69; mean age = 74). The performed survey showed that the majority of respondents were unaware of the telemedical services (56.8%). A total of 62.3% of C.1 and 34.8% of C.2 declared their understanding of telemedical services. The 10.3% of correct explanations regarding telemedical service were found among all study participants. The most desirable feature was the detection of life-threatening and health-threatening situations (65.2% vs. 66.2%). The findings suggest a lack of awareness of telemedical services and the opportunities offered by wearable telemedical devices

    A conceptual approach to enhance the well-being of elderly people

    Get PDF
    The number of elderly people living alone is increasing. Consequently, a lot of research works have been addressing this issue in order to propose solutions that can enhance the quality of life of elderly people. Most of them have been concerned in dealing with objective issues such as forgetfulness or detecting falls. In this paper, we propose a conceptual approach of a system that intends to enhance the daily sense of user’s well-being. For that, our proposal consists in a system that works as a social network and a smartwatch application that works unobtrusively and collects the user’s physiological data. In addition, we debate how important features such as to detect user’s affective states and to potentiate user’s memory could be implemented. Our study shows that there are still some important limitations which affect the success of applications built in the context of elderly care and which are mostly related with accuracy and usability of this kind of system. However, we believe that with our approach we will be able to address some of those limitations and define a system that can enhance the well-being of elderly people and improve their cognitive capabilities.The work presented in this paper has been developed under the EUREKA - ITEA3 Project PHE (PHE-16040), and by National Funds through FCT (Fundação para a Ciência e a Tecnologia) under the projects UID/EEA/00760/2019 and UID/CEC/00319/2019 and by NORTE-01-0247-FEDER-033275 (AIRDOC - “Aplicação móvel Inteligente para suporte individualizado e monitorização da função e sons Respiratórios de Doentes Obstrutivos Crónicos ”) by NORTE 2020 (Programa Operacional Regional do Norte)

    a critical review

    Get PDF
    The availability of wearable devices (WDs) to collect biometric information and their use during activities of daily living is significantly increasing in the general population. These small electronic devices, which record fitness and health-related outcomes, have been broadly utilized in industries such as medicine, healthcare, and fitness. Since they are simple to use and progressively cheaper, they have also been used for numerous research purposes. However, despite their increasing popularity, most of these WDs do not accurately measure the proclaimed outcomes. In fact, research is equivocal about whether they are valid and reliable methods to specifically evaluate physical activity and health-related outcomes in older adults, since they are mostly designed and produced considering younger subjects? physical and mental characteristics. Additionally, their constant evolution through continuous upgrades and redesigned versions, suggests the need for constant up-to-date reviews and research. Accordingly, this article aims to scrutinize the state-of-the-art scientific evidence about the usefulness of WDs, specifically on older adults, to monitor physical activity and health-related outcomes. This critical review not only aims to inform older consumers but also aid researchers in study design when selecting physical activity and healthcare monitoring devices for elderly people.DB19-D819-F720 | Carlos Eduardo da Silva TeixeiraN/
    corecore