24,874 research outputs found

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    WormBase - Nematode Biology and Genomes

    Get PDF
    WormBase is the major public online database resource for the _Caenorhabditis_ research community. The database was developed primarily for the nematode _C. elegans_ but expanded to host genomes and biological data from other closely related nematode species including _C. briggsae_, _C. remanei_, _C. brenneri_, _C. japonica_ and _Pristionchus pacificus_. WormBase has developed tools to mine the data held within the database and compare the hosted species. Over the years we have developed a variety of curation pipelines which often begin in a "first-pass" literature curation step. This involves a brief overview of the literature before directing it to specialised data curators who extract all relevant information. Curators focus on particular data types or experimental techniques such as gene structure changes (see the Sequence curation poster), variations, phenotypes or RNAi and their expertise in these fields make curation efficient. WormBase works with many other groups and consortiums to validate, process and integrate both large and small scale data resources. WormBase also provides data that will be of interest to the wider biomedical and bioinformatics communities allowing researchers to utilise the information and techniques offered by nematodes to study wider aspects including medicine and disease.
&#xa

    Semantic business process management: a vision towards using semantic web services for business process management

    Get PDF
    Business process management (BPM) is the approach to manage the execution of IT-supported business operations from a business expert's view rather than from a technical perspective. However, the degree of mechanization in BPM is still very limited, creating inertia in the necessary evolution and dynamics of business processes, and BPM does not provide a truly unified view on the process space of an organization. We trace back the problem of mechanization of BPM to an ontological one, i.e. the lack of machine-accessible semantics, and argue that the modeling constructs of semantic Web services frameworks, especially WSMO, are a natural fit to creating such a representation. As a consequence, we propose to combine SWS and BPM and create one consolidated technology, which we call semantic business process management (SBPM
    • …
    corecore