31 research outputs found

    On the Shape of the General Error Locator Polynomial for Cyclic Codes

    Get PDF
    General error locator polynomials were introduced in 2005 as an alternative decoding for cyclic codes. We now present a conjecture on their sparsity, which would imply polynomial-time decoding for all cyclic codes. A general result on the explicit form of the general error locator polynomial for all cyclic codes is given, along with several results for specific code families, providing evidence to our conjecture. From these, a theoretical justification of the sparsity of general error locator polynomials is obtained for all binary cyclic codes with t <= 2 and n < 105, as well as for t = 3 and n < 63, except for some cases where the conjectured sparsity is proved by a computer check. Moreover, we summarize all related results, previously published, and we show how they provide further evidence to our conjecture. Finally, we discuss the link between our conjecture and the complexity of bounded-distance decoding of the cyclic codes

    Improved decoding of affine-variety codes

    Get PDF
    General error locator polynomials are polynomials able to decode any correctable syndrome for a given linear code. Such polynomials are known to exist for all cyclic codes and for a large class of linear codes. We provide some decoding techniques for affine-variety codes using some multidimensional extensions of general error locator polynomials. We prove the existence of such polynomials for any correctable affine-variety code and hence for any linear code. We propose two main different approaches, that depend on the underlying geometry. We compute some interesting cases, including Hermitian codes. To prove our coding theory results, we develop a theory for special classes of zero-dimensional ideals, that can be considered generalizations of stratified ideals. Our improvement with respect to stratified ideals is twofold: we generalize from one variable to many variables and we introduce points with multiplicities

    List Decoding of Algebraic Codes

    Get PDF

    Coding theory:a Gröbner basis approach

    Get PDF

    Algebraic Techniques for Circuit Verification

    Get PDF
    In this thesis we describe some computer algebra techniques for the formal verification of logic or arithmetic circuits

    Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data

    Get PDF
    We provide formal definitions and efficient secure techniques for - turning noisy information into keys usable for any cryptographic application, and, in particular, - reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying material that, unlike traditional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We propose two primitives: a "fuzzy extractor" reliably extracts nearly uniform randomness R from its input; the extraction is error-tolerant in the sense that R will be the same even if the input changes, as long as it remains reasonably close to the original. Thus, R can be used as a key in a cryptographic application. A "secure sketch" produces public information about its input w that does not reveal w, and yet allows exact recovery of w given another value that is close to w. Thus, it can be used to reliably reproduce error-prone biometric inputs without incurring the security risk inherent in storing them. We define the primitives to be both formally secure and versatile, generalizing much prior work. In addition, we provide nearly optimal constructions of both primitives for various measures of ``closeness'' of input data, such as Hamming distance, edit distance, and set difference.Comment: 47 pp., 3 figures. Prelim. version in Eurocrypt 2004, Springer LNCS 3027, pp. 523-540. Differences from version 3: minor edits for grammar, clarity, and typo

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore