5,901 research outputs found

    Meta-Heuristics for Dynamic Lot Sizing: a review and comparison of solution approaches

    Get PDF
    Proofs from complexity theory as well as computational experiments indicate that most lot sizing problems are hard to solve. Because these problems are so difficult, various solution techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu search, genetic algorithms and simulated annealing, have become popular and efficient tools for solving hard combinational optimization problems. We review the various meta-heuristics that have been specifically developed to solve lot sizing problems, discussing their main components such as representation, evaluation neighborhood definition and genetic operators. Further, we briefly review other solution approaches, such as dynamic programming, cutting planes, Dantzig-Wolfe decomposition, Lagrange relaxation and dedicated heuristics. This allows us to compare these techniques. Understanding their respective advantages and disadvantages gives insight into how we can integrate elements from several solution approaches into more powerful hybrid algorithms. Finally, we discuss general guidelines for computational experiments and illustrate these with several examples

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Solving Lotsizing Problems on Parallel Identical Machines Using Symmetry Breaking Constraints

    Get PDF
    Production planning on multiple parallel machines is an interesting problem, both from a theoretical and practical point of view. The parallel machine lotsizing problem consists of finding the optimal timing and level of production and the best allocation of products to machines. In this paper we look at how to incorporate parallel machines in a Mixed Integer Programming model when using commercial optimization software. More specifically, we look at the issue of symmetry. When multiple identical machines are available, many alternative optimal solutions can be created by renumbering the machines. These alternative solutions lead to difficulties in the branch-and-bound algorithm. We propose new constraints to break this symmetry. We tested our approach on the parallel machine lotsizing problem with setup costs and times, using a network reformulation for this problem. Computational tests indicate that several of the proposed symmetry breaking constraints substantially improve the solution time, except when used for solving the very easy problems. The results highlight the importance of creative modeling in solving Mixed Integer Programming problems.Mixed Integer Programming;Formulations;Symmetry;Lotsizing

    Improvement to an existing multi-level capacitated lot sizing problem considering setup carryover, backlogging, and emission control

    Get PDF
    This paper presents a multi-level, multi-item, multi-period capacitated lot-sizing problem. The lot-sizing problem studies can obtain production quantities, setup decisions and inventory levels in each period fulfilling the demand requirements with limited capacity resources, considering the Bill of Material (BOM) structure while simultaneously minimizing the production, inventory, and machine setup costs. The paper proposes an exact solution to Chowdhury et al. (2018)\u27s[1] developed model, which considers the backlogging cost, setup carryover & greenhouse gas emission control to its model complexity. The problem contemplates the Dantzig-Wolfe (D.W.) decomposition to decompose the multi-level capacitated problem into a single-item uncapacitated lot-sizing sub-problem. To avoid the infeasibilities of the weighted problem (WP), an artificial variable is introduced, and the Big-M method is employed in the D.W. decomposition to produce an always feasible master problem. In addition, Wagner & Whitin\u27s[2] forward recursion algorithm is also incorporated in the solution approach for both end and component items to provide the minimum cost production plan. Introducing artificial variables in the D.W. decomposition method is a novel approach to solving the MLCLSP model. A better performance was achieved regarding reduced computational time (reduced by 50%) and optimality gap (reduced by 97.3%) in comparison to Chowdhury et al. (2018)\u27s[1] developed model

    A relax-and-fix with fix-and-optimize heuristic applied to multi-level lot-sizing problems

    Get PDF
    In this paper, we propose a simple but efficient heuristic that combines construction and improvement heuristic ideas to solve multi-level lot-sizing problems. A relax-and-fix heuristic is firstly used to build an initial solution, and this is further improved by applying a fix-and-optimize heuristic. We also introduce a novel way to define the mixed-integer subproblems solved by both heuristics. The efficiency of the approach is evaluated solving two different classes of multi-level lot-sizing problems: the multi-level capacitated lot-sizing problem with backlogging and the two-stage glass container production scheduling problem (TGCPSP). We present extensive computational results including four test sets of the Multi-item Lot-Sizing with Backlogging library, and real-world test problems defined for the TGCPSP, where we benchmark against state-of-the-art methods from the recent literature. The computational results show that our combined heuristic approach is very efficient and competitive, outperforming benchmark methods for most of the test problems

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    Operating room planning and scheduling: A literature review.

    Get PDF
    This paper provides a review of recent research on operating room planning and scheduling. We evaluate the literature on multiple fields that are related to either the problem setting (e.g. performance measures or patient classes) or the technical features (e.g. solution technique or uncertainty incorporation). Since papers are pooled and evaluated in various ways, a diversified and detailed overview is obtained that facilitates the identification of manuscripts related to the reader's specific interests. Throughout the literature review, we summarize the significant trends in research on operating room planning and scheduling and we identify areas that need to be addressed in the future.Health care; Operating room; Scheduling; Planning; Literature review;

    Bio-Inspired Multi-Agent Technology for Industrial Applications

    Get PDF
    corecore