14,901 research outputs found

    Machine Learning-Based Models for Assessing Impacts Before, During and After Hurricane Events

    Get PDF
    Social media provides an abundant amount of real-time information that can be used before, during, and after extreme weather events. Government officials, emergency managers, and other decision makers can use social media data for decision-making, preparation, and assistance. Machine learning-based models can be used to analyze data collected from social media. Social media data and cloud cover temperature as physical sensor data was analyzed in this study using machine learning techniques. Data was collected from Twitter regarding Hurricane Florence from September 11, 2018 through September 20, 2018 and Hurricane Michael from October 1, 2018 through October 18, 2018. Natural language processing models were developed to demonstrate sentiment among the data. Forecasting models for future events were developed for better emergency management during extreme weather events. Relationships among data were explored using social media data and physical sensor data to analyze extreme weather events as these events become more prevalent in our lives. In this study, social media sentiment analysis was performed that can be used by emergency managers, government officials, and decision makers. Different machine learning algorithms and natural language processing techniques were used to examine sentiment classification. The approach is multi-modal, which will help stakeholders develop a more comprehensive understanding of the social impacts of a storm and how to help prepare for future storms. Of all the classification algorithms used in this study to analyze sentiment, the naive Bayes classifier displayed the highest accuracy for this data. The results demonstrate that machine learning and natural language processing techniques, using Twitter data, are a practical method for sentiment analysis. The data can be used for correlation analysis between social sentiment and physical data and can be used by decision makers for better emergency management decisions

    Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold

    Get PDF
    Sentiment analysis over Twitter offers organisations and individuals a fast and effective way to monitor the publics' feelings towards them and their competitors. To assess the performance of sentiment analysis methods over Twitter a small set of evaluation datasets have been released in the last few years. In this paper we present an overview of eight publicly available and manually annotated evaluation datasets for Twitter sentiment analysis. Based on this review, we show that a common limitation of most of these datasets, when assessing sentiment analysis at target (entity) level, is the lack of distinctive sentiment annotations among the tweets and the entities contained in them. For example, the tweet "I love iPhone, but I hate iPad" can be annotated with a mixed sentiment label, but the entity iPhone within this tweet should be annotated with a positive sentiment label. Aiming to overcome this limitation, and to complement current evaluation datasets, we present STS-Gold, a new evaluation dataset where tweets and targets (entities) are annotated individually and therefore may present different sentiment labels. This paper also provides a comparative study of the various datasets along several dimensions including: total number of tweets, vocabulary size and sparsity. We also investigate the pair-wise correlation among these dimensions as well as their correlations to the sentiment classification performance on different datasets

    Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems

    Get PDF
    Crowdsourcing systems commonly face the problem of aggregating multiple judgments provided by potentially unreliable workers. In addition, several aspects of the design of efficient crowdsourcing processes, such as defining worker's bonuses, fair prices and time limits of the tasks, involve knowledge of the likely duration of the task at hand. Bringing this together, in this work we introduce a new time--sensitive Bayesian aggregation method that simultaneously estimates a task's duration and obtains reliable aggregations of crowdsourced judgments. Our method, called BCCTime, builds on the key insight that the time taken by a worker to perform a task is an important indicator of the likely quality of the produced judgment. To capture this, BCCTime uses latent variables to represent the uncertainty about the workers' completion time, the tasks' duration and the workers' accuracy. To relate the quality of a judgment to the time a worker spends on a task, our model assumes that each task is completed within a latent time window within which all workers with a propensity to genuinely attempt the labelling task (i.e., no spammers) are expected to submit their judgments. In contrast, workers with a lower propensity to valid labeling, such as spammers, bots or lazy labelers, are assumed to perform tasks considerably faster or slower than the time required by normal workers. Specifically, we use efficient message-passing Bayesian inference to learn approximate posterior probabilities of (i) the confusion matrix of each worker, (ii) the propensity to valid labeling of each worker, (iii) the unbiased duration of each task and (iv) the true label of each task. Using two real-world public datasets for entity linking tasks, we show that BCCTime produces up to 11% more accurate classifications and up to 100% more informative estimates of a task's duration compared to state-of-the-art methods

    Traffic event detection framework using social media

    Get PDF
    This is an accepted manuscript of an article published by IEEE in 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC) on 18/09/2017, available online: https://ieeexplore.ieee.org/document/8038595 The accepted version of the publication may differ from the final published version.© 2017 IEEE. Traffic incidents are one of the leading causes of non-recurrent traffic congestions. By detecting these incidents on time, traffic management agencies can activate strategies to ease congestion and travelers can plan their trip by taking into consideration these factors. In recent years, there has been an increasing interest in Twitter because of the real-time nature of its data. Twitter has been used as a way of predicting revenues, accidents, natural disasters, and traffic. This paper proposes a framework for the real-time detection of traffic events using Twitter data. The methodology consists of a text classification algorithm to identify traffic related tweets. These traffic messages are then geolocated and further classified into positive, negative, or neutral class using sentiment analysis. In addition, stress and relaxation strength detection is performed, with the purpose of further analyzing user emotions within the tweet. Future work will be carried out to implement the proposed framework in the West Midlands area, United Kingdom.Published versio

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770
    corecore