15,440 research outputs found

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis (Extended)

    Get PDF
    This extended paper presents 1) a novel hierarchy and recursion extension to the process tree model; and 2) the first, recursion aware process model discovery technique that leverages hierarchical information in event logs, typically available for software systems. This technique allows us to analyze the operational processes of software systems under real-life conditions at multiple levels of granularity. The work can be positioned in-between reverse engineering and process mining. An implementation of the proposed approach is available as a ProM plugin. Experimental results based on real-life (software) event logs demonstrate the feasibility and usefulness of the approach and show the huge potential to speed up discovery by exploiting the available hierarchy.Comment: Extended version (14 pages total) of the paper Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis. This Technical Report version includes the guarantee proofs for the proposed discovery algorithm

    Synthesizing Program Input Grammars

    Full text link
    We present an algorithm for synthesizing a context-free grammar encoding the language of valid program inputs from a set of input examples and blackbox access to the program. Our algorithm addresses shortcomings of existing grammar inference algorithms, which both severely overgeneralize and are prohibitively slow. Our implementation, GLADE, leverages the grammar synthesized by our algorithm to fuzz test programs with structured inputs. We show that GLADE substantially increases the incremental coverage on valid inputs compared to two baseline fuzzers
    • …
    corecore