2,844 research outputs found

    Psychometrics in Practice at RCEC

    Get PDF
    A broad range of topics is dealt with in this volume: from combining the psychometric generalizability and item response theories to the ideas for an integrated formative use of data-driven decision making, assessment for learning and diagnostic testing. A number of chapters pay attention to computerized (adaptive) and classification testing. Other chapters treat the quality of testing in a general sense, but for topics like maintaining standards or the testing of writing ability, the quality of testing is dealt with more specifically.\ud All authors are connected to RCEC as researchers. They present one of their current research topics and provide some insight into the focus of RCEC. The selection of the topics and the editing intends that the book should be of special interest to educational researchers, psychometricians and practitioners in educational assessment

    Application of Particle Swarm Optimization to Formative E-Assessment in Project Management

    Get PDF
    The current paper describes the application of Particle Swarm Optimization algorithm to the formative e-assessment problem in project management. The proposed approach resolves the issue of personalization, by taking into account, when selecting the item tests in an e-assessment, the following elements: the ability level of the user, the targeted difficulty of the test and the learning objectives, represented by project management concepts which have to be checked. The e-assessment tool in which the Particle Swarm Optimization algorithm is integrated is also presented. Experimental results and comparison with other algorithms used in item tests selection prove the suitability of the proposed approach to the formative e-assessment domain. The study is presented in the framework of other evolutionary and genetic algorithms applied in e-education.Particle Swarm Optimization, Genetic Algorithms, Evolutionary Algorithms, Formative E-assessment, E-education

    Principles and practice of on-demand testing

    Get PDF

    When Easy Becomes Boring and Difficult Becomes Frustrating: Disentangling the Effects of Item Difficulty Level and Person Proficiency on Learning and Motivation.

    Get PDF
    The research on electronic learning environments has evolved towards creating adaptive learning environments. In this study, the focus is on adaptive curriculum sequencing, in particular, the efficacy of an adaptive curriculum sequencing algorithm based on matching the item difficulty level to the learner’s proficiency level. We therefore explored the effect of the relative difficulty level on learning outcome and motivation. Results indicate that, for learning environments consisting of questions focusing on just one dimension and with knowledge of correct response, it does not matter whether we present easy, moderate or difficult items or whether we present the items with a random mix of difficulty levels, regarding both learning and motivation

    Exploiting Cognitive Structure for Adaptive Learning

    Full text link
    Adaptive learning, also known as adaptive teaching, relies on learning path recommendation, which sequentially recommends personalized learning items (e.g., lectures, exercises) to satisfy the unique needs of each learner. Although it is well known that modeling the cognitive structure including knowledge level of learners and knowledge structure (e.g., the prerequisite relations) of learning items is important for learning path recommendation, existing methods for adaptive learning often separately focus on either knowledge levels of learners or knowledge structure of learning items. To fully exploit the multifaceted cognitive structure for learning path recommendation, we propose a Cognitive Structure Enhanced framework for Adaptive Learning, named CSEAL. By viewing path recommendation as a Markov Decision Process and applying an actor-critic algorithm, CSEAL can sequentially identify the right learning items to different learners. Specifically, we first utilize a recurrent neural network to trace the evolving knowledge levels of learners at each learning step. Then, we design a navigation algorithm on the knowledge structure to ensure the logicality of learning paths, which reduces the search space in the decision process. Finally, the actor-critic algorithm is used to determine what to learn next and whose parameters are dynamically updated along the learning path. Extensive experiments on real-world data demonstrate the effectiveness and robustness of CSEAL.Comment: Accepted by KDD 2019 Research Track. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'19
    • 

    corecore