20,375 research outputs found

    The Use of Geometric Histograms for Model-Based Object Recognition

    Full text link

    Face analysis using curve edge maps

    Get PDF
    This paper proposes an automatic and real-time system for face analysis, usable in visual communication applications. In this approach, faces are represented with Curve Edge Maps, which are collections of polynomial segments with a convex region. The segments are extracted from edge pixels using an adaptive incremental linear-time fitting algorithm, which is based on constructive polynomial fitting. The face analysis system considers face tracking, face recognition and facial feature detection, using Curve Edge Maps driven by histograms of intensities and histograms of relative positions. When applied to different face databases and video sequences, the average face recognition rate is 95.51%, the average facial feature detection rate is 91.92% and the accuracy in location of the facial features is 2.18% in terms of the size of the face, which is comparable with or better than the results in literature. However, our method has the advantages of simplicity, real-time performance and extensibility to the different aspects of face analysis, such as recognition of facial expressions and talking

    Lifting GIS Maps into Strong Geometric Context for Scene Understanding

    Full text link
    Contextual information can have a substantial impact on the performance of visual tasks such as semantic segmentation, object detection, and geometric estimation. Data stored in Geographic Information Systems (GIS) offers a rich source of contextual information that has been largely untapped by computer vision. We propose to leverage such information for scene understanding by combining GIS resources with large sets of unorganized photographs using Structure from Motion (SfM) techniques. We present a pipeline to quickly generate strong 3D geometric priors from 2D GIS data using SfM models aligned with minimal user input. Given an image resectioned against this model, we generate robust predictions of depth, surface normals, and semantic labels. We show that the precision of the predicted geometry is substantially more accurate other single-image depth estimation methods. We then demonstrate the utility of these contextual constraints for re-scoring pedestrian detections, and use these GIS contextual features alongside object detection score maps to improve a CRF-based semantic segmentation framework, boosting accuracy over baseline models

    Learning and Matching Multi-View Descriptors for Registration of Point Clouds

    Full text link
    Critical to the registration of point clouds is the establishment of a set of accurate correspondences between points in 3D space. The correspondence problem is generally addressed by the design of discriminative 3D local descriptors on the one hand, and the development of robust matching strategies on the other hand. In this work, we first propose a multi-view local descriptor, which is learned from the images of multiple views, for the description of 3D keypoints. Then, we develop a robust matching approach, aiming at rejecting outlier matches based on the efficient inference via belief propagation on the defined graphical model. We have demonstrated the boost of our approaches to registration on the public scanning and multi-view stereo datasets. The superior performance has been verified by the intensive comparisons against a variety of descriptors and matching methods
    • 

    corecore