8,976 research outputs found

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    The combined approach to ontology-based data access

    Get PDF
    The use of ontologies for accessing data is one of the most exciting new applications of description logics in databases and other information systems. A realistic way of realising sufficiently scalable ontology- based data access in practice is by reduction to querying relational databases. In this paper, we describe the combined approach, which incorporates the information given by the ontology into the data and employs query rewriting to eliminate spurious answers. We illustrate this approach for ontologies given in the DL-Lite family of description logics and briefly discuss the results obtained for the EL family

    Polynomial conjunctive query rewriting under unary inclusion dependencies

    Get PDF
    Ontology-based data access (OBDA) is widely accepted as an important ingredient of the new generation of information systems. In the OBDA paradigm, potentially incomplete relational data is enriched by means of ontologies, representing intensional knowledge of the application domain. We consider the problem of conjunctive query answering in OBDA. Certain ontology languages have been identified as FO-rewritable (e.g., DL-Lite and sticky-join sets of TGDs), which means that the ontology can be incorporated into the user's query, thus reducing OBDA to standard relational query evaluation. However, all known query rewriting techniques produce queries that are exponentially large in the size of the user's query, which can be a serious issue for standard relational database engines. In this paper, we present a polynomial query rewriting for conjunctive queries under unary inclusion dependencies. On the other hand, we show that binary inclusion dependencies do not admit polynomial query rewriting algorithms

    Managing data through the lens of an ontology

    Get PDF
    Ontology-based data management aims at managing data through the lens of an ontology, that is, a conceptual representation of the domain of interest in the underlying information system. This new paradigm provides several interesting features, many of which have already been proved effective in managing complex information systems. This article introduces the notion of ontology-based data management, illustrating the main ideas underlying the paradigm, and pointing out the importance of knowledge representation and automated reasoning for addressing the technical challenges it introduces

    On the first-order rewritability of conjunctive queries over binary guarded existential rules

    Get PDF
    We study conjunctive query answering and first-order rewritability of conjunctive queries for binary guarded existential rules. In particular, we prove that the problem of establishing whether a given set of binary guarded existential rules is such that all conjunctive queries admit a first-order rewriting is decidable, and present a technique for solving this problem. These results have a important practical impact, since they make it possible to identify those sets of binary guarded existential rules for which it is possible to answer every conjunctive query through query rewriting and standard evaluation of a first-order query (actually, a union of conjunctive queries) over a relational database system

    Equality-friendly well-founded semantics and applications to description logics

    Get PDF
    We tackle the problem of defining a well-founded semantics (WFS) for Datalog rules with existentially quantified variables in their heads and nega- tions in their bodies. In particular, we provide a WFS for the recent Datalog± family of ontology languages, which covers several important description logics (DLs). To do so, we generalize Datalog± by non-stratified nonmonotonic nega- tion in rule bodies, and we define a WFS for this generalization via guarded fixed point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs, which also do not make the UNA. We prove that for guarded Datalog± with negation under the equality- friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise defi- nitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering
    corecore