1,510 research outputs found

    An automatically built named entity lexicon for Arabic

    Get PDF
    We have successfully adapted and extended the automatic Multilingual, Interoperable Named Entity Lexicon approach to Arabic, using Arabic WordNet (AWN) and Arabic Wikipedia (AWK). First, we extract AWN’s instantiable nouns and identify the corresponding categories and hyponym subcategories in AWK. Then, we exploit Wikipedia inter-lingual links to locate correspondences between articles in ten different languages in order to identify Named Entities (NEs). We apply keyword search on AWK abstracts to provide for Arabic articles that do not have a correspondence in any of the other languages. In addition, we perform a post-processing step to fetch further NEs from AWK not reachable through AWN. Finally, we investigate diacritization using matching with geonames databases, MADA-TOKAN tools and different heuristics for restoring vowel marks of Arabic NEs. Using this methodology, we have extracted approximately 45,000 Arabic NEs and built, to the best of our knowledge, the largest, most mature and well-structured Arabic NE lexical resource to date. We have stored and organised this lexicon following the Lexical Markup Framework (LMF) ISO standard. We conduct a quantitative and qualitative evaluation of the lexicon against a manually annotated gold standard and achieve precision scores from 95.83% (with 66.13% recall) to 99.31% (with 61.45% recall) according to different values of a threshold

    On the evaluation and improvement of arabic wordnet coverage and usability

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10579-013-9237-0[EN] Built on the basis of the methods developed for Princeton WordNet and EuroWordNet, Arabic WordNet (AWN) has been an interesting project which combines WordNet structure compliance with Arabic particularities. In this paper, some AWN shortcomings related to coverage and usability are addressed. The use of AWN in question/answering (Q/A) helped us to deeply evaluate the resource from an experience-based perspective. Accordingly, an enrichment of AWN was built by semi-automatically extending its content. Indeed, existing approaches and/or resources developed for other languages were adapted and used for AWN. The experiments conducted in Arabic Q/A have shown an improvement of both AWN coverage as well as usability. Concerning coverage, a great amount of named entities extracted from YAGO were connected with corresponding AWN synsets. Also, a significant number of new verbs and nouns (including Broken Plural forms) were added. In terms of usability, thanks to the use of AWN, the performance for the AWN-based Q/A application registered an overall improvement with respect to the following three measures: accuracy (+9.27 % improvement), mean reciprocal rank (+3.6 improvement) and number of answered questions (+12.79 % improvement).The work presented in Sect. 2.2 was done in the framework of the bilateral Spain-Morocco AECID-PCI C/026728/09 research project. The research of the two first authors is done in the framework of the PROGRAMME D'URGENCE project (grant no. 03/2010). The research of the third author is done in the framework of WIQEI IRSES project (grant no. 269180) within the FP 7 Marie Curie People, DIANA-APPLICATIONS-Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) research project and VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems. We would like to thank Manuel Montes-y-Gomez (INAOE-Puebla, Mexico) and Sandra Garcia-Blasco (Bitsnbrain, Spain) for their feedback on the work presented in Sect. 2.4. We would like finally to thank Violetta Cavalli-Sforza (Al Akhawayn University in Ifrane, Morocco) for having reviewed the linguistic level of the entire document.Abouenour, L.; Bouzoubaa, K.; Rosso, P. (2013). On the evaluation and improvement of arabic wordnet coverage and usability. Language Resources and Evaluation. 47(3):891-917. https://doi.org/10.1007/s10579-013-9237-0S891917473AbbĂšs, R., Dichy, J., & Hassoun, M. (2004). The architecture of a standard Arabic lexical database: Some figures, ratios and categories from the DIINAR.1 source program. In Workshop on computational approaches to Arabic script-based languages, Coling 2004. Geneva, Switzerland.Abouenour, L., Bouzoubaa, K., & Rosso, P. (2009a). Structure-based evaluation of an Arabic semantic query expansion using the JIRS passage retrieval system. In Proceedings of the workshop on computational approaches to Semitic languages, E-ACL-2009, Athens, Greece, March.Abouenour, L., Bouzoubaa, K., & Rosso, P. (2009b). Three-level approach for passage retrieval in Arabic question/answering systems. In Proceedings of the 3rd international conference on Arabic language processing CITALA’09, Rabat, Morocco, May, 2009.Abouenour, L., Bouzoubaa, K., & Rosso, P. (2010a). An evaluated semantic query expansion and structure-based approach for enhancing Arabic question/answering. Special Issue in the International Journal on Information and Communication Technologies/IEEE. June.Abouenour, L., Bouzoubaa, K., & Rosso, P. (2010b). Using the YAGO ontology as a resource for the enrichment of named entities in Arabic WordNet. In Workshop LR & HLT for semitic languages, LREC’10. Malta. May, 2010.Ahonen-Myka, H. (2002). Discovery of frequent word sequences in text. In Proceedings of the ESF exploratory workshop on pattern detection and discovery (pp. 180–189). London, UK: Springer.Al Khalifa, M., & RodrĂ­guez, H. (2009). Automatically extending NE coverage of Arabic WordNet using Wikipedia. In Proceedings of the 3rd international conference on Arabic language processing CITALA’09, May, Rabat, Morocco.Alotaiby, F., Alkharashi, I., & Foda, S. (2009). Processing large Arabic text corpora: Preliminary analysis and results. In Proceedings of the second international conference on Arabic language resources and tools (pp. 78–82), Cairo, Egypt.Baker, C. F., Fillmore, C. J., & Cronin, B. (2003). The structure of the FrameNet database. International Journal of Lexicography, 16(3), 281–296.Baldwin, T., Pool, P., & Colowick, S. M. (2010). PanLex and LEXTRACT: Translating all words of all languages of the world. In Proceedings of Coling 2010, demonstration volume (pp. 37–40), Beijing.Benajiba, Y., Diab, M., & Rosso, P. (2009). Using language independent and language specific features to enhance Arabic named entity recognition. In IEEE transactions on audio, speech and language processing. Special Issue on Processing Morphologically Rich Languages, 17(5), 2009.Benajiba, Y., Rosso, P., & Lyhyaoui, A. (2007). Implementation of the ArabiQA question answering system’s components. In Proceedings of workshop on Arabic natural language processing, 2nd Information Communication Technologies int. symposium, ICTIS-2007, April 3–5, Fez, Morocco.BenoĂźt, S., & Darja, F. (2008). Building a free French WordNet from multilingual resources. Workshop on Ontolex 2008, LREC’08, June, Marrakech, Morocco.Black, W., Elkateb, S., Rodriguez, H, Alkhalifa, M., Vossen, P., Pease, A., et al. (2006). Introducing the Arabic WordNet project. In Proceedings of the third international WordNet conference. Sojka, Choi: Fellbaum & Vossen (eds).Boudelaa, S., & Gaskell, M. G. (2002). A reexamination of the default system for Arabic plurals. Language and Cognitive Processes, 17, 321–343.Brini, W., Ellouze & M., Hadrich, B. L. (2009a). QASAL: Un systĂšme de question-rĂ©ponse dĂ©diĂ© pour les questions factuelles en langue Arabe. In 9th JournĂ©es Scientifiques des Jeunes Chercheurs en GĂ©nie Electrique et Informatique, Tunisia.Brini, W., Trigui, O., Ellouze, M., Mesfar, S., Hadrich, L., & Rosso, P. (2009b). Factoid and definitional Arabic question answering system. In Post-proceedings of NOOJ-2009, June 8–10, Tozeur, Tunisia.Buscaldi, D., Rosso, P., GĂłmez, J. M., & Sanchis, E. (2010). Answering questions with an n-gram based passage retrieval engine. Journal of Intelligent Information Systems, 34(2), 113–134.Costa, R. P., & Seco, N. (2008). Hyponymy extraction and Web search behavior analysis based on query reformulation. In Proceedings of the 11th Ibero-American conference on AI: advances in artificial intelligence (pp. 1–10).Denicia-carral, C., Montes-y-GĂ”mez, M., Villaseñor-pineda, L., & Hernandez, R. G. (2006). A text mining approach for definition question answering. In Proceedings of the 5th international conference on natural language processing, FinTal’2006, Turku, Finland.Diab, M. T. (2004). Feasibility of bootstrapping an Arabic Wordnet leveraging parallel corpora and an English Wordnet. In Proceedings of the Arabic language technologies and resources, NEMLAR, Cairo, Egypt.El Amine, M. A. (2009). Vers une interface pour l’enrichissement des requĂȘtes en arabe dans un systĂšme de recherche d’information. In Proceedings of the 2nd confĂ©rence internationale sur l’informatique et ses applications (CIIA’09), May 3–4, Saida, Algeria.Elghamry, K. (2008). Using the web in building a corpus-based hypernymy-hyponymy Lexicon with hierarchical structure for Arabic. In Proceedings of the 6th international conference on informatics and systems, INFOS 2008. Cairo, Egypt.Elkateb, S., Black, W., Vossen, P., Farwell, D., RodrĂ­guez, H., Pease, A., et al. (2006). Arabic WordNet and the challenges of Arabic. In Proceedings of Arabic NLP/MT conference, London, UK.Fellbaum, C. (Ed.). (1998). WordNet: An electronic lexical database. MA: MIT Press.GarcĂ­a-Blasco, S., Danger, R., & Rosso, P. (2010). Drug–drug interaction detection: A new approach based on maximal frequent sequences. Sociedad Española para el Procesamiento del Lenguaje Natural, SEPLN, 45, 263–266.GarcĂ­a-HernĂĄndez, R. A. (2007). Algoritmos para el descubrimiento de patrones secuenciales maximales. Ph.D. Thesis, INAOE. September, Mexico.GarcĂ­a-HernĂĄndez, R. A., MartĂ­nez Trinidad, J. F., & Carrasco-ochoa, J. A. (2010). Finding maximal sequential patterns in text document collections and single documents. Informatica, 34(1), 93–101.Goweder, A., & De Roeck, A. (2001). Assessment of a significant Arabic corpus. In Proceedings of the Arabic NLP workshop at ACL/EACL, (pp. 73–79), Toulouse, France.Graff, D. (2007). Arabic Gigaword (3rd ed.). Philadelphia, USA: Linguistic Data Consortium.Graff, D., Kong, J., Chen, K., & Maeda, K. (2007). English Gigaword (3rd ed.). Philadelphia, USA: Linguistic Data Consortium.Hammou, B., Abu-salem, H., Lytinen, S., & Evens, M. (2002). QARAB: A question answering system to support the Arabic language. In Proceedings of the workshop on computational approaches to Semitic languages, ACL, (pp. 55–65), Philadelphia.Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th conference on Computational linguistics, COLING ‘92 (vol. 2, pp. 539–545).Kanaan, G., Hammouri, A., Al-Shalabi, R., & Swalha, M. (2009). A new question answering system for the Arabic language. American Journal of Applied Sciences, 6(4), 797–805.Kim, H., Chen, S., & Veale, T. (2006). Analogical reasoning with a synergy of HowNet and WordNet. In Proceedings of GWC’2006, the 3rd global WordNet conference, January, Cheju, Korea.Kipper-Schuler, K. (2006). VerbNet: A broad-coverage, comprehensive verb lexicon. Ph.D. Thesis.Mohammed, F. A., Nasser, K., & Harb, H. M. (1993). A knowledge-based Arabic question answering system (AQAS). In ACM SIGART bulletin (pp. 21–33).Niles, I., & Pease, A. (2001). Towards a standard upper ontology. In Proceedings of FOIS-2 (pp. 2–9), Ogunquit, Maine.Niles, I., & Pease, A. (2003). Linking lexicons and ontologies: Mapping WordNet to the suggested upper merged ontology. In Proceedings of the 2003 international conference on information and knowledge engineering, Las Vegas, Nevada.Ortega-Mendoza, R. M., Villaseñor-pineda, L., & Montes-y-GĂ”mez, M. (2007). Using lexical patterns to extract hyponyms from the Web. In Proceedings of the Mexican international conference on artificial intelligence MICAI 2007. November, Aguascalientes, Mexico. Lecture Notes in Artificial Intelligence 4827. Berlin: Springer.Palmer, M., P. Kingsbury, & D. Gildea. (2005). The proposition bank: An annotated corpus of semantic roles. Computational Linguistics, 21. USA: MIT Press.Pantel, P., & Pennacchiotti, M. (2006). Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In Proceedings of conference on computational linguistics association for computational linguistics, (pp. 113–120), Sydney, Australia.Rodriguez, H., Farwell, D., Farreres, J., Bertran, M., Alkhalifa, M., & MartĂ­, A. (2008a). Arabic WordNet: Semi-automatic extensions using Bayesian Inference. In Proceedings of the the 6th conference on language resources and evaluation LREC2008, May, Marrakech, Morocco.Rodriguez, H., Farwell, D., Farreres, J., Bertran, M., Alkhalifa, M., Mart., M., et al. (2008b). Arabic WordNet: Current state and future extensions. In Proceedings of the fourth global WordNet conference, January 22–25, Szeged, Hungary.Sharaf, A. M. (2009). The Qur’an annotation for text mining. First year transfer report. School of Computing, Leeds University. December.Snow, R., Jurafsky, D., & Andrew, Y. N. (2005). Learning syntactic patterns for automatic hypernym discovery. In Lawrence K. Saul et al. (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). YAGO: A core of semantic knowledge unifying WordNet and Wikipedia. In Proceedings of 16th international World Wide Web conference WWW’2007, (pp. 697–706), May, Banff, Alberta, Canada: ACM Press.Tjong Kim Sang, E., & Hofmann, K. (2007). Automatic extraction of Dutch hypernym–hyponym pairs. In Proceedings of CLIN-2006, Leuven, Belgium.Toral, A., Munoz, R., & Monachini, M. (2008). Named entity WordNet. In Proceedings of the Sixth international conference on language resources and evaluation (LREC’08), Marrakech, Morocco.Vossen, P. (Ed.). (1998). EuroWordNet, a multilingual database with lexical semantic networks. The Netherlands: Kluwer.Wagner, A. (2005). Learning thematic role relations for lexical semantic nets. Ph.D. Thesis, University of TĂŒbingen, 2005

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    Arabic Query Expansion Using WordNet and Association Rules

    Get PDF
    Query expansion is the process of adding additional relevant terms to the original queries to improve the performance of information retrieval systems. However, previous studies showed that automatic query expansion using WordNet do not lead to an improvement in the performance. One of the main challenges of query expansion is the selection of appropriate terms. In this paper, we review this problem using Arabic WordNet and Association Rules within the context of Arabic Language. The results obtained confirmed that with an appropriate selection method, we are able to exploit Arabic WordNet to improve the retrieval performance. Our empirical results on a sub-corpus from the Xinhua collection showed that our automatic selection method has achieved a significant performance improvement in terms of MAP and recall and a better precision with the first top retrieved documents

    Sense-Based Arabic Information Retrieval Using Harmony Search Algorithm

    Get PDF
    Information Retrieval (IR) is a field of computer science that deals with storing, searching, and retrievingdocuments that satisfy the user need. The modern standard Arabic language is rich in multiple meanings (senses) for manywords and this is substantially due to lack of diacritical marks. The task for finding appropriate meanings is a key demand inmost of the Arabic IR applications. Actually, the successful system should not be interested only in the retrieval quality andoblivious to the system efficiency. Thus, this paper contributes to improve the system effectiveness by finding appropriatestemming methodology, word sense disambiguation, and query expansion for addressing the retrieval quality of AIR. Also, itcontributes to improve the system efficiency through using a powerful metaheuristic search called Harmony Search (HS)algorithm inspired from the musical improvisation processes. The performance of the proposed system outperforms the one inthe traditional system in a rate of 19.5% while reduces the latency in an approximate rate of 0.077 second for each query
    • 

    corecore