20 research outputs found

    Decision model for evaluating reactor disposition of excess plutonium

    Full text link

    An Integrated Multicriteria Decision-Making Approach for Evaluating Nuclear Fuel Cycle Systems for Long-term Sustainability on the Basis of an Equilibrium Model: Technique for Order of Preference by Similarity to Ideal Solution, Preference Ranking Organization Method for Enrichment Evaluation, and Multiattribute Utility Theory Combined with Analytic Hierarchy Process

    Get PDF
    The focus on the issues surrounding spent nuclear fuel and lifetime extension of old nuclear power plants continues to grow nowadays. A transparent decision-making process to identify the best suitable nuclear fuel cycle (NFC) is considered to be the key task in the current situation. Through this study, an attempt is made to develop an equilibrium model for the NFC to calculate the material flows based on 1 TWh of electricity production, and to perform integrated multicriteria decision-making method analyses via the analytic hierarchy process technique for order of preference by similarity to ideal solution, preference ranking organization method for enrichment evaluation, and multiattribute utility theory methods. This comparative study is aimed at screening and ranking the three selected NFC options against five aspects: sustainability, environmental friendliness, economics, proliferation resistance, and technical feasibility. The selected fuel cycle options include pressurized water reactor (PWR) once-through cycle, PWR mixed oxide cycle, or pyroprocessing sodium-cooled fast reactor cycle. A sensitivity analysis was performed to prove the robustness of the results and explore the influence of criteria on the obtained ranking. As a result of the comparative analysis, the pyroprocessing sodium-cooled fast reactor cycle is determined to be the most competitive option among the NFC scenarios.ope

    Multiple Criteria Decision Making and Multiattribute Utility Theory

    Get PDF
    T his paper is an update of a paper that five of us published in 1992. The areas of multiple criteria decision making (MCDM) and multiattribute utility theory (MAUT) continue to be active areas of management science research and application. This paper extends the history of these areas and discusses topics we believe to be important for the future of these fields

    Evaluation of alternatives for the disposition of surplus weapons-usable plutonium

    Full text link

    Nuclear Waste Management Decision-Making Support with MCDA

    Get PDF
    The paper proposes a multicriteria decision analysis (MCDA) framework for a comparative evaluation of nuclear waste management strategies taking into account different local perspectives (expert and stakeholder opinions). Of note, a novel approach is taken using a multiple-criteria formulation that is methodologically adapted to tackle various conflicting criteria and a large number of expert/stakeholder groups involved in the decision-making process. The purpose is to develop a framework and to show its application to qualitative comparison and ranking of options in a hypothetical case of three waste management alternatives: interim storage at and/or away from the reactor site for the next 100 years, interim decay storage followed in midterm by disposal in a national repository, and disposal in a multinational repository. Additionally, major aspects of a decision-making aid are identified and discussed in separate paper sections dedicated to application context, decision supporting process, in particular problem structuring, objective hierarchy, performance evaluation modeling, sensitivity/robustness analyses, and interpretation of results (practical impact). The aim of the paper is to demonstrate the application of the MCDA framework developed to a generic hypothetical case and indicate how MCDA could support a decision on nuclear waste management policies in a “small” newcomer country embarking on nuclear technology in the future

    Composite indicators in energy and environmental modeling

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Energy Division progress report, fiscal years 1994--1995

    Full text link

    1999 LDRD Laboratory Directed Research and Development

    Full text link
    corecore