1,303 research outputs found

    Algorithmic Structuring of Cut-free Proofs

    Get PDF
    The problem of algorithmic structuring of proofs in the sequent calculi LK and LKB ( LK where blocks of quantifiers can be introduced in one step) is investigated, where a distinction is made between linear proofs and proofs in tree form. In this framework, structuring coincides with the introduction of cuts into a proof. The algorithmic solvability of this problem can be reduced to the question of k-l-compressibility: "Given a proof of length k , and l ≀ k : Is there is a proof of length ≀ l ?" When restricted to proofs with universal or existential cuts, this problem is shown to be (1) undecidable for linear or tree-like LK-proofs (corresponds to the undecidability of second order unification), (2) undecidable for linear LKB-proofs (corresponds to the undecidability of semi-unification), and (3) decidable for tree-like LKB -proofs (corresponds to a decidable subprob- lem of semi-unification)

    Constructive Many-One Reduction from the Halting Problem to Semi-Unification

    Get PDF
    Semi-unification is the combination of first-order unification and first-order matching. The undecidability of semi-unification has been proven by Kfoury, Tiuryn, and Urzyczyn in the 1990s by Turing reduction from Turing machine immortality (existence of a diverging configuration). The particular Turing reduction is intricate, uses non-computational principles, and involves various intermediate models of computation. The present work gives a constructive many-one reduction from the Turing machine halting problem to semi-unification. This establishes RE-completeness of semi-unification under many-one reductions. Computability of the reduction function, constructivity of the argument, and correctness of the argument is witnessed by an axiom-free mechanization in the Coq proof assistant. Arguably, this serves as comprehensive, precise, and surveyable evidence for the result at hand. The mechanization is incorporated into the existing, well-maintained Coq library of undecidability proofs. Notably, a variant of Hooper's argument for the undecidability of Turing machine immortality is part of the mechanization.Comment: CSL 2022 - LMCS special issu

    The undecidability of Mitchell's subtyping relationship

    Full text link
    Mitchell defined and axiomatized a subtyping relationship (also known as containment, coercibility, or subsumption) over the types of System F (with "→" and "∀"). This subtyping relationship is quite simple and does not involve bounded quantification. Tiuryn and Urzyczyn quite recently proved this subtyping relationship to be undecidable. This paper supplies a new undecidability proof for this subtyping relationship. First, a new syntax-directed axiomatization of the subtyping relationship is defined. Then, this axiomatization is used to prove a reduction from the undecidable problem of semi-unification to subtyping. The undecidability of subtyping implies the undecidability of type checking for System F extended with Mitchell's subtyping, also known as "F plus eta".National Science Foundation (CCR-9113196, CCR-9417382

    Undecidability of Semi-Unification on a Napkin

    Get PDF
    Semi-unification (unification combined with matching) has been proven undecidable by Kfoury, Tiuryn, and Urzyczyn in the 1990s. The original argument reduces Turing machine immortality via Turing machine boundedness to semi-unification. The latter part is technically most challenging, involving several intermediate models of computation. This work presents a novel, simpler reduction from Turing machine boundedness to semi-unification. In contrast to the original argument, we directly translate boundedness to solutions of semi-unification and vice versa. In addition, the reduction is mechanized in the Coq proof assistant, relying on a mechanization-friendly stack machine model that corresponds to space-bounded Turing machines. Taking advantage of the simpler proof, the mechanization is comparatively short and fully constructive

    Computability in constructive type theory

    Get PDF
    We give a formalised and machine-checked account of computability theory in the Calculus of Inductive Constructions (CIC), the constructive type theory underlying the Coq proof assistant. We first develop synthetic computability theory, pioneered by Richman, Bridges, and Bauer, where one treats all functions as computable, eliminating the need for a model of computation. We assume a novel parametric axiom for synthetic computability and give proofs of results like Rice’s theorem, the Myhill isomorphism theorem, and the existence of Post’s simple and hypersimple predicates relying on no other axioms such as Markov’s principle or choice axioms. As a second step, we introduce models of computation. We give a concise overview of definitions of various standard models and contribute machine-checked simulation proofs, posing a non-trivial engineering effort. We identify a notion of synthetic undecidability relative to a fixed halting problem, allowing axiom-free machine-checked proofs of undecidability. We contribute such undecidability proofs for the historical foundational problems of computability theory which require the identification of invariants left out in the literature and now form the basis of the Coq Library of Undecidability Proofs. We then identify the weak call-by-value λ-calculus L as sweet spot for programming in a model of computation. We introduce a certifying extraction framework and analyse an axiom stating that every function of type ℕ → ℕ is L-computable.Wir behandeln eine formalisierte und maschinengeprĂŒfte Betrachtung von Berechenbarkeitstheorie im Calculus of Inductive Constructions (CIC), der konstruktiven Typtheorie die dem Beweisassistenten Coq zugrunde liegt. Wir entwickeln erst synthetische Berechenbarkeitstheorie, vorbereitet durch die Arbeit von Richman, Bridges und Bauer, wobei alle Funktionen als berechenbar behandelt werden, ohne Notwendigkeit eines Berechnungsmodells. Wir nehmen ein neues, parametrisches Axiom fĂŒr synthetische Berechenbarkeit an und beweisen Resultate wie das Theorem von Rice, das Isomorphismus Theorem von Myhill und die Existenz von Post’s simplen und hypersimplen PrĂ€dikaten ohne Annahme von anderen Axiomen wie Markov’s Prinzip oder Auswahlaxiomen. Als zweiten Schritt fĂŒhren wir Berechnungsmodelle ein. Wir geben einen kompakten Überblick ĂŒber die Definition von verschiedenen Berechnungsmodellen und erklĂ€ren maschinengeprĂŒfte Simulationsbeweise zwischen diesen Modellen, welche einen hohen Konstruktionsaufwand beinhalten. Wir identifizieren einen Begriff von synthetischer Unentscheidbarkeit relativ zu einem fixierten Halteproblem welcher axiomenfreie maschinengeprĂŒfte Unentscheidbarkeitsbeweise erlaubt. Wir erklĂ€ren solche Beweise fĂŒr die historisch grundlegenden Probleme der Berechenbarkeitstheorie, die das Identifizieren von Invarianten die normalerweise in der Literatur ausgelassen werden benötigen und nun die Basis der Coq Library of Undecidability Proofs bilden. Wir identifizieren dann den call-by-value λ-KalkĂŒl L als sweet spot fĂŒr die Programmierung in einem Berechnungsmodell. Wir fĂŒhren ein zertifizierendes Extraktionsframework ein und analysieren ein Axiom welches postuliert dass jede Funktion vom Typ N→N L-berechenbar ist

    The Undecidability of Type Related Problems in Type-free Style System F

    Get PDF

    The Algebraic Intersection Type Unification Problem

    Full text link
    The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the algebraic intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games
    • 

    corecore